Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
f1orel
Next ⟩
f1odm
Metamath Proof Explorer
Ascii
Unicode
Theorem
f1orel
Description:
A one-to-one onto mapping is a relation.
(Contributed by
NM
, 13-Dec-2003)
Ref
Expression
Assertion
f1orel
⊢
F
:
A
⟶
1-1 onto
B
→
Rel
⁡
F
Proof
Step
Hyp
Ref
Expression
1
f1ofun
⊢
F
:
A
⟶
1-1 onto
B
→
Fun
⁡
F
2
funrel
⊢
Fun
⁡
F
→
Rel
⁡
F
3
1
2
syl
⊢
F
:
A
⟶
1-1 onto
B
→
Rel
⁡
F