Metamath Proof Explorer


Theorem f1setex

Description: The set of injections between two classes exists if the codomain exists. (Contributed by AV, 14-Aug-2024)

Ref Expression
Assertion f1setex BVf|f:A1-1BV

Proof

Step Hyp Ref Expression
1 fsetex BVf|f:ABV
2 df-f1 f:A1-1Bf:ABFunf-1
3 2 abbii f|f:A1-1B=f|f:ABFunf-1
4 abanssl f|f:ABFunf-1f|f:AB
5 3 4 eqsstri f|f:A1-1Bf|f:AB
6 5 a1i BVf|f:A1-1Bf|f:AB
7 1 6 ssexd BVf|f:A1-1BV