Metamath Proof Explorer


Theorem fldpropd

Description: If two structures have the same group components (properties), one is a field iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses drngpropd.1 φ B = Base K
drngpropd.2 φ B = Base L
drngpropd.3 φ x B y B x + K y = x + L y
drngpropd.4 φ x B y B x K y = x L y
Assertion fldpropd φ K Field L Field

Proof

Step Hyp Ref Expression
1 drngpropd.1 φ B = Base K
2 drngpropd.2 φ B = Base L
3 drngpropd.3 φ x B y B x + K y = x + L y
4 drngpropd.4 φ x B y B x K y = x L y
5 1 2 3 4 drngpropd φ K DivRing L DivRing
6 1 2 3 4 crngpropd φ K CRing L CRing
7 5 6 anbi12d φ K DivRing K CRing L DivRing L CRing
8 isfld K Field K DivRing K CRing
9 isfld L Field L DivRing L CRing
10 7 8 9 3bitr4g φ K Field L Field