Metamath Proof Explorer


Theorem fmpod

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fmpodg.1 φ F = x A , y B C
fmpodg.2 φ x A y B C S
Assertion fmpod φ F : A × B S

Proof

Step Hyp Ref Expression
1 fmpodg.1 φ F = x A , y B C
2 fmpodg.2 φ x A y B C S
3 eqidd φ A × B = A × B
4 1 2 3 fmpodg φ F : A × B S