Metamath Proof Explorer


Theorem fmpod

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fmpodg.1 ( 𝜑𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 ) )
fmpodg.2 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝐶𝑆 )
Assertion fmpod ( 𝜑𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝑆 )

Proof

Step Hyp Ref Expression
1 fmpodg.1 ( 𝜑𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 ) )
2 fmpodg.2 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝐶𝑆 )
3 eqidd ( 𝜑 → ( 𝐴 × 𝐵 ) = ( 𝐴 × 𝐵 ) )
4 1 2 3 fmpodg ( 𝜑𝐹 : ( 𝐴 × 𝐵 ) ⟶ 𝑆 )