Metamath Proof Explorer


Theorem fmpodg

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fmpodg.1 ( 𝜑𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 ) )
fmpodg.2 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝐶𝑆 )
fmpodg.3 ( 𝜑𝑅 = ( 𝐴 × 𝐵 ) )
Assertion fmpodg ( 𝜑𝐹 : 𝑅𝑆 )

Proof

Step Hyp Ref Expression
1 fmpodg.1 ( 𝜑𝐹 = ( 𝑥𝐴 , 𝑦𝐵𝐶 ) )
2 fmpodg.2 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝐶𝑆 )
3 fmpodg.3 ( 𝜑𝑅 = ( 𝐴 × 𝐵 ) )
4 2 ralrimivva ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 𝐶𝑆 )
5 eqid ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = ( 𝑥𝐴 , 𝑦𝐵𝐶 )
6 5 fmpo ( ∀ 𝑥𝐴𝑦𝐵 𝐶𝑆 ↔ ( 𝑥𝐴 , 𝑦𝐵𝐶 ) : ( 𝐴 × 𝐵 ) ⟶ 𝑆 )
7 4 6 sylib ( 𝜑 → ( 𝑥𝐴 , 𝑦𝐵𝐶 ) : ( 𝐴 × 𝐵 ) ⟶ 𝑆 )
8 1 3 feq12d ( 𝜑 → ( 𝐹 : 𝑅𝑆 ↔ ( 𝑥𝐴 , 𝑦𝐵𝐶 ) : ( 𝐴 × 𝐵 ) ⟶ 𝑆 ) )
9 7 8 mpbird ( 𝜑𝐹 : 𝑅𝑆 )