Step |
Hyp |
Ref |
Expression |
1 |
|
fmpodg.1 |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) ) |
2 |
|
fmpodg.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐶 ∈ 𝑆 ) |
3 |
|
fmpodg.3 |
⊢ ( 𝜑 → 𝑅 = ( 𝐴 × 𝐵 ) ) |
4 |
2
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑆 ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
6 |
5
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑆 ↔ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) : ( 𝐴 × 𝐵 ) ⟶ 𝑆 ) |
7 |
4 6
|
sylib |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) : ( 𝐴 × 𝐵 ) ⟶ 𝑆 ) |
8 |
1 3
|
feq12d |
⊢ ( 𝜑 → ( 𝐹 : 𝑅 ⟶ 𝑆 ↔ ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) : ( 𝐴 × 𝐵 ) ⟶ 𝑆 ) ) |
9 |
7 8
|
mpbird |
⊢ ( 𝜑 → 𝐹 : 𝑅 ⟶ 𝑆 ) |