Metamath Proof Explorer


Theorem fmpodg

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 29-Sep-2025)

Ref Expression
Hypotheses fmpodg.1
|- ( ph -> F = ( x e. A , y e. B |-> C ) )
fmpodg.2
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> C e. S )
fmpodg.3
|- ( ph -> R = ( A X. B ) )
Assertion fmpodg
|- ( ph -> F : R --> S )

Proof

Step Hyp Ref Expression
1 fmpodg.1
 |-  ( ph -> F = ( x e. A , y e. B |-> C ) )
2 fmpodg.2
 |-  ( ( ph /\ ( x e. A /\ y e. B ) ) -> C e. S )
3 fmpodg.3
 |-  ( ph -> R = ( A X. B ) )
4 2 ralrimivva
 |-  ( ph -> A. x e. A A. y e. B C e. S )
5 eqid
 |-  ( x e. A , y e. B |-> C ) = ( x e. A , y e. B |-> C )
6 5 fmpo
 |-  ( A. x e. A A. y e. B C e. S <-> ( x e. A , y e. B |-> C ) : ( A X. B ) --> S )
7 4 6 sylib
 |-  ( ph -> ( x e. A , y e. B |-> C ) : ( A X. B ) --> S )
8 1 3 feq12d
 |-  ( ph -> ( F : R --> S <-> ( x e. A , y e. B |-> C ) : ( A X. B ) --> S ) )
9 7 8 mpbird
 |-  ( ph -> F : R --> S )