Metamath Proof Explorer


Theorem fmpod

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Zhi Wang, 30-Sep-2025)

Ref Expression
Hypotheses fmpodg.1
|- ( ph -> F = ( x e. A , y e. B |-> C ) )
fmpodg.2
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> C e. S )
Assertion fmpod
|- ( ph -> F : ( A X. B ) --> S )

Proof

Step Hyp Ref Expression
1 fmpodg.1
 |-  ( ph -> F = ( x e. A , y e. B |-> C ) )
2 fmpodg.2
 |-  ( ( ph /\ ( x e. A /\ y e. B ) ) -> C e. S )
3 eqidd
 |-  ( ph -> ( A X. B ) = ( A X. B ) )
4 1 2 3 fmpodg
 |-  ( ph -> F : ( A X. B ) --> S )