Metamath Proof Explorer


Theorem fmptapd

Description: Append an additional value to a function. (Contributed by Thierry Arnoux, 3-Jan-2017) (Revised by AV, 10-Aug-2024)

Ref Expression
Hypotheses fmptapd.a φAV
fmptapd.b φBW
fmptapd.s φRA=S
fmptapd.c φx=AC=B
Assertion fmptapd φxRCAB=xSC

Proof

Step Hyp Ref Expression
1 fmptapd.a φAV
2 fmptapd.b φBW
3 fmptapd.s φRA=S
4 fmptapd.c φx=AC=B
5 4 1 2 fmptsnd φAB=xAC
6 5 uneq2d φxRCAB=xRCxAC
7 mptun xRAC=xRCxAC
8 7 a1i φxRAC=xRCxAC
9 3 mpteq1d φxRAC=xSC
10 6 8 9 3eqtr2d φxRCAB=xSC