Metamath Proof Explorer


Theorem fmptcos

Description: Composition of two functions expressed as mapping abstractions. (Contributed by NM, 22-May-2006) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypotheses fmptcof.1 φ x A R B
fmptcof.2 φ F = x A R
fmptcof.3 φ G = y B S
Assertion fmptcos φ G F = x A R / y S

Proof

Step Hyp Ref Expression
1 fmptcof.1 φ x A R B
2 fmptcof.2 φ F = x A R
3 fmptcof.3 φ G = y B S
4 nfcv _ z S
5 nfcsb1v _ y z / y S
6 csbeq1a y = z S = z / y S
7 4 5 6 cbvmpt y B S = z B z / y S
8 3 7 eqtrdi φ G = z B z / y S
9 csbeq1 z = R z / y S = R / y S
10 1 2 8 9 fmptcof φ G F = x A R / y S