Metamath Proof Explorer


Theorem fmptssfisupp

Description: The restriction of a mapping function has finite support if that function has finite support. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Hypotheses fmptssfisupp.1 φfinSuppZxAB
fmptssfisupp.2 φCA
fmptssfisupp.3 φZV
Assertion fmptssfisupp φfinSuppZxCB

Proof

Step Hyp Ref Expression
1 fmptssfisupp.1 φfinSuppZxAB
2 fmptssfisupp.2 φCA
3 fmptssfisupp.3 φZV
4 2 resmptd φxABC=xCB
5 1 3 fsuppres φfinSuppZxABC
6 4 5 eqbrtrrd φfinSuppZxCB