Metamath Proof Explorer


Theorem fmtno1

Description: The 1 st Fermat number, see remark in ApostolNT p. 7. (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno1 FermatNo 1 = 5

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 fmtno 1 0 FermatNo 1 = 2 2 1 + 1
3 1 2 ax-mp FermatNo 1 = 2 2 1 + 1
4 2cn 2
5 exp1 2 2 1 = 2
6 4 5 ax-mp 2 1 = 2
7 6 oveq2i 2 2 1 = 2 2
8 7 oveq1i 2 2 1 + 1 = 2 2 + 1
9 sq2 2 2 = 4
10 9 oveq1i 2 2 + 1 = 4 + 1
11 4p1e5 4 + 1 = 5
12 8 10 11 3eqtri 2 2 1 + 1 = 5
13 3 12 eqtri FermatNo 1 = 5