| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 2 |  | fmtno |  |-  ( 1 e. NN0 -> ( FermatNo ` 1 ) = ( ( 2 ^ ( 2 ^ 1 ) ) + 1 ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( FermatNo ` 1 ) = ( ( 2 ^ ( 2 ^ 1 ) ) + 1 ) | 
						
							| 4 |  | 2cn |  |-  2 e. CC | 
						
							| 5 |  | exp1 |  |-  ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( 2 ^ 1 ) = 2 | 
						
							| 7 | 6 | oveq2i |  |-  ( 2 ^ ( 2 ^ 1 ) ) = ( 2 ^ 2 ) | 
						
							| 8 | 7 | oveq1i |  |-  ( ( 2 ^ ( 2 ^ 1 ) ) + 1 ) = ( ( 2 ^ 2 ) + 1 ) | 
						
							| 9 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 10 | 9 | oveq1i |  |-  ( ( 2 ^ 2 ) + 1 ) = ( 4 + 1 ) | 
						
							| 11 |  | 4p1e5 |  |-  ( 4 + 1 ) = 5 | 
						
							| 12 | 8 10 11 | 3eqtri |  |-  ( ( 2 ^ ( 2 ^ 1 ) ) + 1 ) = 5 | 
						
							| 13 | 3 12 | eqtri |  |-  ( FermatNo ` 1 ) = 5 |