Metamath Proof Explorer


Theorem fmtno

Description: The N th Fermat number. (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno
|- ( N e. NN0 -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) )

Proof

Step Hyp Ref Expression
1 df-fmtno
 |-  FermatNo = ( n e. NN0 |-> ( ( 2 ^ ( 2 ^ n ) ) + 1 ) )
2 oveq2
 |-  ( n = N -> ( 2 ^ n ) = ( 2 ^ N ) )
3 2 oveq2d
 |-  ( n = N -> ( 2 ^ ( 2 ^ n ) ) = ( 2 ^ ( 2 ^ N ) ) )
4 3 oveq1d
 |-  ( n = N -> ( ( 2 ^ ( 2 ^ n ) ) + 1 ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) )
5 id
 |-  ( N e. NN0 -> N e. NN0 )
6 ovexd
 |-  ( N e. NN0 -> ( ( 2 ^ ( 2 ^ N ) ) + 1 ) e. _V )
7 1 4 5 6 fvmptd3
 |-  ( N e. NN0 -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) )