Metamath Proof Explorer


Definition df-fmtno

Description: Define the function that enumerates theFermat numbers, see definition in ApostolNT p. 7. (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion df-fmtno
|- FermatNo = ( n e. NN0 |-> ( ( 2 ^ ( 2 ^ n ) ) + 1 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfmtno
 |-  FermatNo
1 vn
 |-  n
2 cn0
 |-  NN0
3 c2
 |-  2
4 cexp
 |-  ^
5 1 cv
 |-  n
6 3 5 4 co
 |-  ( 2 ^ n )
7 3 6 4 co
 |-  ( 2 ^ ( 2 ^ n ) )
8 caddc
 |-  +
9 c1
 |-  1
10 7 9 8 co
 |-  ( ( 2 ^ ( 2 ^ n ) ) + 1 )
11 1 2 10 cmpt
 |-  ( n e. NN0 |-> ( ( 2 ^ ( 2 ^ n ) ) + 1 ) )
12 0 11 wceq
 |-  FermatNo = ( n e. NN0 |-> ( ( 2 ^ ( 2 ^ n ) ) + 1 ) )