Metamath Proof Explorer
Description: Define the function that enumerates theFermat numbers, see definition
in ApostolNT p. 7. (Contributed by AV, 13-Jun-2021)
|
|
Ref |
Expression |
|
Assertion |
df-fmtno |
⊢ FermatNo = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ) |
Detailed syntax breakdown
| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cfmtno |
⊢ FermatNo |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cn0 |
⊢ ℕ0 |
| 3 |
|
c2 |
⊢ 2 |
| 4 |
|
cexp |
⊢ ↑ |
| 5 |
1
|
cv |
⊢ 𝑛 |
| 6 |
3 5 4
|
co |
⊢ ( 2 ↑ 𝑛 ) |
| 7 |
3 6 4
|
co |
⊢ ( 2 ↑ ( 2 ↑ 𝑛 ) ) |
| 8 |
|
caddc |
⊢ + |
| 9 |
|
c1 |
⊢ 1 |
| 10 |
7 9 8
|
co |
⊢ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) |
| 11 |
1 2 10
|
cmpt |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ) |
| 12 |
0 11
|
wceq |
⊢ FermatNo = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ) |