Metamath Proof Explorer


Definition df-fmtno

Description: Define the function that enumerates theFermat numbers, see definition in ApostolNT p. 7. (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion df-fmtno FermatNo = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfmtno FermatNo
1 vn 𝑛
2 cn0 0
3 c2 2
4 cexp
5 1 cv 𝑛
6 3 5 4 co ( 2 ↑ 𝑛 )
7 3 6 4 co ( 2 ↑ ( 2 ↑ 𝑛 ) )
8 caddc +
9 c1 1
10 7 9 8 co ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 )
11 1 2 10 cmpt ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) )
12 0 11 wceq FermatNo = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) )