Metamath Proof Explorer
Description: Define the function that enumerates theFermat numbers, see definition
in ApostolNT p. 7. (Contributed by AV, 13-Jun-2021)
|
|
Ref |
Expression |
|
Assertion |
df-fmtno |
⊢ FermatNo = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cfmtno |
⊢ FermatNo |
1 |
|
vn |
⊢ 𝑛 |
2 |
|
cn0 |
⊢ ℕ0 |
3 |
|
c2 |
⊢ 2 |
4 |
|
cexp |
⊢ ↑ |
5 |
1
|
cv |
⊢ 𝑛 |
6 |
3 5 4
|
co |
⊢ ( 2 ↑ 𝑛 ) |
7 |
3 6 4
|
co |
⊢ ( 2 ↑ ( 2 ↑ 𝑛 ) ) |
8 |
|
caddc |
⊢ + |
9 |
|
c1 |
⊢ 1 |
10 |
7 9 8
|
co |
⊢ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) |
11 |
1 2 10
|
cmpt |
⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ) |
12 |
0 11
|
wceq |
⊢ FermatNo = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ) |