Metamath Proof Explorer


Theorem fmtno

Description: The N th Fermat number. (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) )

Proof

Step Hyp Ref Expression
1 df-fmtno FermatNo = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) )
2 oveq2 ( 𝑛 = 𝑁 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑁 ) )
3 2 oveq2d ( 𝑛 = 𝑁 → ( 2 ↑ ( 2 ↑ 𝑛 ) ) = ( 2 ↑ ( 2 ↑ 𝑁 ) ) )
4 3 oveq1d ( 𝑛 = 𝑁 → ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) )
5 id ( 𝑁 ∈ ℕ0𝑁 ∈ ℕ0 )
6 ovexd ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ∈ V )
7 1 4 5 6 fvmptd3 ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) )