Description: The N th Fermat number. (Contributed by AV, 13-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | fmtno | ⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fmtno | ⊢ FermatNo = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ) | |
2 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑁 ) ) | |
3 | 2 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( 2 ↑ ( 2 ↑ 𝑛 ) ) = ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) |
4 | 3 | oveq1d | ⊢ ( 𝑛 = 𝑁 → ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) |
5 | id | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0 ) | |
6 | ovexd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ∈ V ) | |
7 | 1 4 5 6 | fvmptd3 | ⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) |