| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmtno | ⊢ ( 𝑁  ∈  ℕ0  →  ( FermatNo ‘ 𝑁 )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) | 
						
							| 2 |  | 3z | ⊢ 3  ∈  ℤ | 
						
							| 3 | 2 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  3  ∈  ℤ ) | 
						
							| 4 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℕ0 ) | 
						
							| 6 |  | id | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℕ0 ) | 
						
							| 7 | 5 6 | nn0expcld | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ 𝑁 )  ∈  ℕ0 ) | 
						
							| 8 | 5 7 | nn0expcld | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℕ0 ) | 
						
							| 9 |  | peano2nn0 | ⊢ ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℕ0  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  ∈  ℕ0 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  ∈  ℕ0 ) | 
						
							| 11 | 10 | nn0zd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  ∈  ℤ ) | 
						
							| 12 |  | 3m1e2 | ⊢ ( 3  −  1 )  =  2 | 
						
							| 13 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 14 |  | exp1 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 1 )  =  2 ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ( 2 ↑ 1 )  =  2 | 
						
							| 16 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 18 |  | 1le2 | ⊢ 1  ≤  2 | 
						
							| 19 | 18 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  1  ≤  2 ) | 
						
							| 20 | 17 6 19 | expge1d | ⊢ ( 𝑁  ∈  ℕ0  →  1  ≤  ( 2 ↑ 𝑁 ) ) | 
						
							| 21 |  | 1zzd | ⊢ ( 𝑁  ∈  ℕ0  →  1  ∈  ℤ ) | 
						
							| 22 | 7 | nn0zd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 23 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 24 | 23 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  1  <  2 ) | 
						
							| 25 | 17 21 22 24 | leexp2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 1  ≤  ( 2 ↑ 𝑁 )  ↔  ( 2 ↑ 1 )  ≤  ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) ) | 
						
							| 26 | 20 25 | mpbid | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ 1 )  ≤  ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) | 
						
							| 27 | 15 26 | eqbrtrrid | ⊢ ( 𝑁  ∈  ℕ0  →  2  ≤  ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) | 
						
							| 28 | 12 27 | eqbrtrid | ⊢ ( 𝑁  ∈  ℕ0  →  ( 3  −  1 )  ≤  ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) | 
						
							| 29 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 30 | 29 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  3  ∈  ℝ ) | 
						
							| 31 |  | 1red | ⊢ ( 𝑁  ∈  ℕ0  →  1  ∈  ℝ ) | 
						
							| 32 | 8 | nn0red | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℝ ) | 
						
							| 33 | 30 31 32 | lesubaddd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 3  −  1 )  ≤  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ↔  3  ≤  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) ) | 
						
							| 34 | 28 33 | mpbid | ⊢ ( 𝑁  ∈  ℕ0  →  3  ≤  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) | 
						
							| 35 |  | eluz2 | ⊢ ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  ∈  ( ℤ≥ ‘ 3 )  ↔  ( 3  ∈  ℤ  ∧  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  ∈  ℤ  ∧  3  ≤  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) ) | 
						
							| 36 | 3 11 34 35 | syl3anbrc | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 37 | 1 36 | eqeltrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( FermatNo ‘ 𝑁 )  ∈  ( ℤ≥ ‘ 3 ) ) |