| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmtno |
|- ( N e. NN0 -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) |
| 2 |
|
3z |
|- 3 e. ZZ |
| 3 |
2
|
a1i |
|- ( N e. NN0 -> 3 e. ZZ ) |
| 4 |
|
2nn0 |
|- 2 e. NN0 |
| 5 |
4
|
a1i |
|- ( N e. NN0 -> 2 e. NN0 ) |
| 6 |
|
id |
|- ( N e. NN0 -> N e. NN0 ) |
| 7 |
5 6
|
nn0expcld |
|- ( N e. NN0 -> ( 2 ^ N ) e. NN0 ) |
| 8 |
5 7
|
nn0expcld |
|- ( N e. NN0 -> ( 2 ^ ( 2 ^ N ) ) e. NN0 ) |
| 9 |
|
peano2nn0 |
|- ( ( 2 ^ ( 2 ^ N ) ) e. NN0 -> ( ( 2 ^ ( 2 ^ N ) ) + 1 ) e. NN0 ) |
| 10 |
8 9
|
syl |
|- ( N e. NN0 -> ( ( 2 ^ ( 2 ^ N ) ) + 1 ) e. NN0 ) |
| 11 |
10
|
nn0zd |
|- ( N e. NN0 -> ( ( 2 ^ ( 2 ^ N ) ) + 1 ) e. ZZ ) |
| 12 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 13 |
|
2cn |
|- 2 e. CC |
| 14 |
|
exp1 |
|- ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) |
| 15 |
13 14
|
ax-mp |
|- ( 2 ^ 1 ) = 2 |
| 16 |
|
2re |
|- 2 e. RR |
| 17 |
16
|
a1i |
|- ( N e. NN0 -> 2 e. RR ) |
| 18 |
|
1le2 |
|- 1 <_ 2 |
| 19 |
18
|
a1i |
|- ( N e. NN0 -> 1 <_ 2 ) |
| 20 |
17 6 19
|
expge1d |
|- ( N e. NN0 -> 1 <_ ( 2 ^ N ) ) |
| 21 |
|
1zzd |
|- ( N e. NN0 -> 1 e. ZZ ) |
| 22 |
7
|
nn0zd |
|- ( N e. NN0 -> ( 2 ^ N ) e. ZZ ) |
| 23 |
|
1lt2 |
|- 1 < 2 |
| 24 |
23
|
a1i |
|- ( N e. NN0 -> 1 < 2 ) |
| 25 |
17 21 22 24
|
leexp2d |
|- ( N e. NN0 -> ( 1 <_ ( 2 ^ N ) <-> ( 2 ^ 1 ) <_ ( 2 ^ ( 2 ^ N ) ) ) ) |
| 26 |
20 25
|
mpbid |
|- ( N e. NN0 -> ( 2 ^ 1 ) <_ ( 2 ^ ( 2 ^ N ) ) ) |
| 27 |
15 26
|
eqbrtrrid |
|- ( N e. NN0 -> 2 <_ ( 2 ^ ( 2 ^ N ) ) ) |
| 28 |
12 27
|
eqbrtrid |
|- ( N e. NN0 -> ( 3 - 1 ) <_ ( 2 ^ ( 2 ^ N ) ) ) |
| 29 |
|
3re |
|- 3 e. RR |
| 30 |
29
|
a1i |
|- ( N e. NN0 -> 3 e. RR ) |
| 31 |
|
1red |
|- ( N e. NN0 -> 1 e. RR ) |
| 32 |
8
|
nn0red |
|- ( N e. NN0 -> ( 2 ^ ( 2 ^ N ) ) e. RR ) |
| 33 |
30 31 32
|
lesubaddd |
|- ( N e. NN0 -> ( ( 3 - 1 ) <_ ( 2 ^ ( 2 ^ N ) ) <-> 3 <_ ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) |
| 34 |
28 33
|
mpbid |
|- ( N e. NN0 -> 3 <_ ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) |
| 35 |
|
eluz2 |
|- ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ ( ( 2 ^ ( 2 ^ N ) ) + 1 ) e. ZZ /\ 3 <_ ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) |
| 36 |
3 11 34 35
|
syl3anbrc |
|- ( N e. NN0 -> ( ( 2 ^ ( 2 ^ N ) ) + 1 ) e. ( ZZ>= ` 3 ) ) |
| 37 |
1 36
|
eqeltrd |
|- ( N e. NN0 -> ( FermatNo ` N ) e. ( ZZ>= ` 3 ) ) |