Step |
Hyp |
Ref |
Expression |
1 |
|
fmtno |
|- ( N e. NN0 -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) |
2 |
|
3z |
|- 3 e. ZZ |
3 |
2
|
a1i |
|- ( N e. NN0 -> 3 e. ZZ ) |
4 |
|
2nn0 |
|- 2 e. NN0 |
5 |
4
|
a1i |
|- ( N e. NN0 -> 2 e. NN0 ) |
6 |
|
id |
|- ( N e. NN0 -> N e. NN0 ) |
7 |
5 6
|
nn0expcld |
|- ( N e. NN0 -> ( 2 ^ N ) e. NN0 ) |
8 |
5 7
|
nn0expcld |
|- ( N e. NN0 -> ( 2 ^ ( 2 ^ N ) ) e. NN0 ) |
9 |
|
peano2nn0 |
|- ( ( 2 ^ ( 2 ^ N ) ) e. NN0 -> ( ( 2 ^ ( 2 ^ N ) ) + 1 ) e. NN0 ) |
10 |
8 9
|
syl |
|- ( N e. NN0 -> ( ( 2 ^ ( 2 ^ N ) ) + 1 ) e. NN0 ) |
11 |
10
|
nn0zd |
|- ( N e. NN0 -> ( ( 2 ^ ( 2 ^ N ) ) + 1 ) e. ZZ ) |
12 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
13 |
|
2cn |
|- 2 e. CC |
14 |
|
exp1 |
|- ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) |
15 |
13 14
|
ax-mp |
|- ( 2 ^ 1 ) = 2 |
16 |
|
2re |
|- 2 e. RR |
17 |
16
|
a1i |
|- ( N e. NN0 -> 2 e. RR ) |
18 |
|
1le2 |
|- 1 <_ 2 |
19 |
18
|
a1i |
|- ( N e. NN0 -> 1 <_ 2 ) |
20 |
17 6 19
|
expge1d |
|- ( N e. NN0 -> 1 <_ ( 2 ^ N ) ) |
21 |
|
1zzd |
|- ( N e. NN0 -> 1 e. ZZ ) |
22 |
7
|
nn0zd |
|- ( N e. NN0 -> ( 2 ^ N ) e. ZZ ) |
23 |
|
1lt2 |
|- 1 < 2 |
24 |
23
|
a1i |
|- ( N e. NN0 -> 1 < 2 ) |
25 |
17 21 22 24
|
leexp2d |
|- ( N e. NN0 -> ( 1 <_ ( 2 ^ N ) <-> ( 2 ^ 1 ) <_ ( 2 ^ ( 2 ^ N ) ) ) ) |
26 |
20 25
|
mpbid |
|- ( N e. NN0 -> ( 2 ^ 1 ) <_ ( 2 ^ ( 2 ^ N ) ) ) |
27 |
15 26
|
eqbrtrrid |
|- ( N e. NN0 -> 2 <_ ( 2 ^ ( 2 ^ N ) ) ) |
28 |
12 27
|
eqbrtrid |
|- ( N e. NN0 -> ( 3 - 1 ) <_ ( 2 ^ ( 2 ^ N ) ) ) |
29 |
|
3re |
|- 3 e. RR |
30 |
29
|
a1i |
|- ( N e. NN0 -> 3 e. RR ) |
31 |
|
1red |
|- ( N e. NN0 -> 1 e. RR ) |
32 |
8
|
nn0red |
|- ( N e. NN0 -> ( 2 ^ ( 2 ^ N ) ) e. RR ) |
33 |
30 31 32
|
lesubaddd |
|- ( N e. NN0 -> ( ( 3 - 1 ) <_ ( 2 ^ ( 2 ^ N ) ) <-> 3 <_ ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) |
34 |
28 33
|
mpbid |
|- ( N e. NN0 -> 3 <_ ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) |
35 |
|
eluz2 |
|- ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) e. ( ZZ>= ` 3 ) <-> ( 3 e. ZZ /\ ( ( 2 ^ ( 2 ^ N ) ) + 1 ) e. ZZ /\ 3 <_ ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) |
36 |
3 11 34 35
|
syl3anbrc |
|- ( N e. NN0 -> ( ( 2 ^ ( 2 ^ N ) ) + 1 ) e. ( ZZ>= ` 3 ) ) |
37 |
1 36
|
eqeltrd |
|- ( N e. NN0 -> ( FermatNo ` N ) e. ( ZZ>= ` 3 ) ) |