Description: Each Fermat number is a positive integer. (Contributed by AV, 26-Jul-2021) (Proof shortened by AV, 4-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | fmtnonn | |- ( N e. NN0 -> ( FermatNo ` N ) e. NN ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmtnoge3 | |- ( N e. NN0 -> ( FermatNo ` N ) e. ( ZZ>= ` 3 ) ) |
|
2 | uzuzle23 | |- ( ( FermatNo ` N ) e. ( ZZ>= ` 3 ) -> ( FermatNo ` N ) e. ( ZZ>= ` 2 ) ) |
|
3 | eluz2nn | |- ( ( FermatNo ` N ) e. ( ZZ>= ` 2 ) -> ( FermatNo ` N ) e. NN ) |
|
4 | 1 2 3 | 3syl | |- ( N e. NN0 -> ( FermatNo ` N ) e. NN ) |