| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmtno |  |-  ( N e. NN0 -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( N e. NN0 -> ( ( FermatNo ` N ) - 1 ) = ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) - 1 ) ) | 
						
							| 3 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 4 | 3 | a1i |  |-  ( N e. NN0 -> 2 e. NN0 ) | 
						
							| 5 |  | id |  |-  ( N e. NN0 -> N e. NN0 ) | 
						
							| 6 | 4 5 | nn0expcld |  |-  ( N e. NN0 -> ( 2 ^ N ) e. NN0 ) | 
						
							| 7 | 4 6 | nn0expcld |  |-  ( N e. NN0 -> ( 2 ^ ( 2 ^ N ) ) e. NN0 ) | 
						
							| 8 | 7 | nn0cnd |  |-  ( N e. NN0 -> ( 2 ^ ( 2 ^ N ) ) e. CC ) | 
						
							| 9 |  | pncan1 |  |-  ( ( 2 ^ ( 2 ^ N ) ) e. CC -> ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) - 1 ) = ( 2 ^ ( 2 ^ N ) ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( N e. NN0 -> ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) - 1 ) = ( 2 ^ ( 2 ^ N ) ) ) | 
						
							| 11 | 2 10 | eqtrd |  |-  ( N e. NN0 -> ( ( FermatNo ` N ) - 1 ) = ( 2 ^ ( 2 ^ N ) ) ) |