Step |
Hyp |
Ref |
Expression |
1 |
|
fmtno |
|- ( N e. NN0 -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) |
2 |
1
|
oveq1d |
|- ( N e. NN0 -> ( ( FermatNo ` N ) - 1 ) = ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) - 1 ) ) |
3 |
|
2nn0 |
|- 2 e. NN0 |
4 |
3
|
a1i |
|- ( N e. NN0 -> 2 e. NN0 ) |
5 |
|
id |
|- ( N e. NN0 -> N e. NN0 ) |
6 |
4 5
|
nn0expcld |
|- ( N e. NN0 -> ( 2 ^ N ) e. NN0 ) |
7 |
4 6
|
nn0expcld |
|- ( N e. NN0 -> ( 2 ^ ( 2 ^ N ) ) e. NN0 ) |
8 |
7
|
nn0cnd |
|- ( N e. NN0 -> ( 2 ^ ( 2 ^ N ) ) e. CC ) |
9 |
|
pncan1 |
|- ( ( 2 ^ ( 2 ^ N ) ) e. CC -> ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) - 1 ) = ( 2 ^ ( 2 ^ N ) ) ) |
10 |
8 9
|
syl |
|- ( N e. NN0 -> ( ( ( 2 ^ ( 2 ^ N ) ) + 1 ) - 1 ) = ( 2 ^ ( 2 ^ N ) ) ) |
11 |
2 10
|
eqtrd |
|- ( N e. NN0 -> ( ( FermatNo ` N ) - 1 ) = ( 2 ^ ( 2 ^ N ) ) ) |