| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmtno |
⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) |
| 2 |
1
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( FermatNo ‘ 𝑁 ) − 1 ) = ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) − 1 ) ) |
| 3 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 4 |
3
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℕ0 ) |
| 5 |
|
id |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0 ) |
| 6 |
4 5
|
nn0expcld |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) ∈ ℕ0 ) |
| 7 |
4 6
|
nn0expcld |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℕ0 ) |
| 8 |
7
|
nn0cnd |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℂ ) |
| 9 |
|
pncan1 |
⊢ ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℂ → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) − 1 ) = ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) − 1 ) = ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) |
| 11 |
2 10
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( ( FermatNo ‘ 𝑁 ) − 1 ) = ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) |