| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fmtno | ⊢ ( 𝑁  ∈  ℕ0  →  ( FermatNo ‘ 𝑁 )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( FermatNo ‘ 𝑁 )  −  1 )  =  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  −  1 ) ) | 
						
							| 3 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℕ0 ) | 
						
							| 5 |  | id | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 | 4 5 | nn0expcld | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ 𝑁 )  ∈  ℕ0 ) | 
						
							| 7 | 4 6 | nn0expcld | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℕ0 ) | 
						
							| 8 | 7 | nn0cnd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℂ ) | 
						
							| 9 |  | pncan1 | ⊢ ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  ∈  ℂ  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  −  1 )  =  ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 )  −  1 )  =  ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) | 
						
							| 11 | 2 10 | eqtrd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( FermatNo ‘ 𝑁 )  −  1 )  =  ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) |