Metamath Proof Explorer


Theorem fmtnom1nn

Description: A Fermat number minus one is a power of a power of two. (Contributed by AV, 29-Jul-2021)

Ref Expression
Assertion fmtnom1nn ( 𝑁 ∈ ℕ0 → ( ( FermatNo ‘ 𝑁 ) − 1 ) = ( 2 ↑ ( 2 ↑ 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 fmtno ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) )
2 1 oveq1d ( 𝑁 ∈ ℕ0 → ( ( FermatNo ‘ 𝑁 ) − 1 ) = ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) − 1 ) )
3 2nn0 2 ∈ ℕ0
4 3 a1i ( 𝑁 ∈ ℕ0 → 2 ∈ ℕ0 )
5 id ( 𝑁 ∈ ℕ0𝑁 ∈ ℕ0 )
6 4 5 nn0expcld ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) ∈ ℕ0 )
7 4 6 nn0expcld ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℕ0 )
8 7 nn0cnd ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℂ )
9 pncan1 ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) ∈ ℂ → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) − 1 ) = ( 2 ↑ ( 2 ↑ 𝑁 ) ) )
10 8 9 syl ( 𝑁 ∈ ℕ0 → ( ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) − 1 ) = ( 2 ↑ ( 2 ↑ 𝑁 ) ) )
11 2 10 eqtrd ( 𝑁 ∈ ℕ0 → ( ( FermatNo ‘ 𝑁 ) − 1 ) = ( 2 ↑ ( 2 ↑ 𝑁 ) ) )