Step |
Hyp |
Ref |
Expression |
1 |
|
2nn |
⊢ 2 ∈ ℕ |
2 |
1
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℕ ) |
3 |
|
id |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0 ) |
4 |
2 3
|
nnexpcld |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ 𝑁 ) ∈ ℕ ) |
5 |
|
nnm1nn0 |
⊢ ( ( 2 ↑ 𝑁 ) ∈ ℕ → ( ( 2 ↑ 𝑁 ) − 1 ) ∈ ℕ0 ) |
6 |
4 5
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 ↑ 𝑁 ) − 1 ) ∈ ℕ0 ) |
7 |
2 6
|
nnexpcld |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) ∈ ℕ ) |
8 |
7
|
nnzd |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) ∈ ℤ ) |
9 |
|
oveq2 |
⊢ ( 𝑘 = ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) → ( 2 · 𝑘 ) = ( 2 · ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) ) ) |
10 |
9
|
oveq1d |
⊢ ( 𝑘 = ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) → ( ( 2 · 𝑘 ) + 1 ) = ( ( 2 · ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) ) + 1 ) ) |
11 |
|
fmtno |
⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) |
12 |
10 11
|
eqeqan12rd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 = ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) ) → ( ( ( 2 · 𝑘 ) + 1 ) = ( FermatNo ‘ 𝑁 ) ↔ ( ( 2 · ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) ) + 1 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) ) |
13 |
|
2cnd |
⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℂ ) |
14 |
7
|
nncnd |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) ∈ ℂ ) |
15 |
13 14
|
mulcomd |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 · ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) ) = ( ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) · 2 ) ) |
16 |
|
expm1t |
⊢ ( ( 2 ∈ ℂ ∧ ( 2 ↑ 𝑁 ) ∈ ℕ ) → ( 2 ↑ ( 2 ↑ 𝑁 ) ) = ( ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) · 2 ) ) |
17 |
13 4 16
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 ↑ ( 2 ↑ 𝑁 ) ) = ( ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) · 2 ) ) |
18 |
15 17
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ0 → ( 2 · ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) ) = ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) |
19 |
18
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 2 · ( 2 ↑ ( ( 2 ↑ 𝑁 ) − 1 ) ) ) + 1 ) = ( ( 2 ↑ ( 2 ↑ 𝑁 ) ) + 1 ) ) |
20 |
8 12 19
|
rspcedvd |
⊢ ( 𝑁 ∈ ℕ0 → ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = ( FermatNo ‘ 𝑁 ) ) |
21 |
|
fmtnonn |
⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) ∈ ℕ ) |
22 |
21
|
nnzd |
⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) ∈ ℤ ) |
23 |
|
odd2np1 |
⊢ ( ( FermatNo ‘ 𝑁 ) ∈ ℤ → ( ¬ 2 ∥ ( FermatNo ‘ 𝑁 ) ↔ ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = ( FermatNo ‘ 𝑁 ) ) ) |
24 |
22 23
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ¬ 2 ∥ ( FermatNo ‘ 𝑁 ) ↔ ∃ 𝑘 ∈ ℤ ( ( 2 · 𝑘 ) + 1 ) = ( FermatNo ‘ 𝑁 ) ) ) |
25 |
20 24
|
mpbird |
⊢ ( 𝑁 ∈ ℕ0 → ¬ 2 ∥ ( FermatNo ‘ 𝑁 ) ) |