| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 2 | 1 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℕ ) | 
						
							| 3 |  | id | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 | 2 3 | nnexpcld | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 5 |  | nnm1nn0 | ⊢ ( ( 2 ↑ 𝑁 )  ∈  ℕ  →  ( ( 2 ↑ 𝑁 )  −  1 )  ∈  ℕ0 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 2 ↑ 𝑁 )  −  1 )  ∈  ℕ0 ) | 
						
							| 7 | 2 6 | nnexpcld | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) )  ∈  ℕ ) | 
						
							| 8 | 7 | nnzd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) )  ∈  ℤ ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑘  =  ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) )  →  ( 2  ·  𝑘 )  =  ( 2  ·  ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) ) ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( 𝑘  =  ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) )  →  ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) ) )  +  1 ) ) | 
						
							| 11 |  | fmtno | ⊢ ( 𝑁  ∈  ℕ0  →  ( FermatNo ‘ 𝑁 )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) | 
						
							| 12 | 10 11 | eqeqan12rd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  =  ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) ) )  →  ( ( ( 2  ·  𝑘 )  +  1 )  =  ( FermatNo ‘ 𝑁 )  ↔  ( ( 2  ·  ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) ) )  +  1 )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) ) | 
						
							| 13 |  | 2cnd | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℂ ) | 
						
							| 14 | 7 | nncnd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) )  ∈  ℂ ) | 
						
							| 15 | 13 14 | mulcomd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2  ·  ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) ) )  =  ( ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) )  ·  2 ) ) | 
						
							| 16 |  | expm1t | ⊢ ( ( 2  ∈  ℂ  ∧  ( 2 ↑ 𝑁 )  ∈  ℕ )  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  =  ( ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) )  ·  2 ) ) | 
						
							| 17 | 13 4 16 | syl2anc | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ ( 2 ↑ 𝑁 ) )  =  ( ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) )  ·  2 ) ) | 
						
							| 18 | 15 17 | eqtr4d | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2  ·  ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) ) )  =  ( 2 ↑ ( 2 ↑ 𝑁 ) ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑁  ∈  ℕ0  →  ( ( 2  ·  ( 2 ↑ ( ( 2 ↑ 𝑁 )  −  1 ) ) )  +  1 )  =  ( ( 2 ↑ ( 2 ↑ 𝑁 ) )  +  1 ) ) | 
						
							| 20 | 8 12 19 | rspcedvd | ⊢ ( 𝑁  ∈  ℕ0  →  ∃ 𝑘  ∈  ℤ ( ( 2  ·  𝑘 )  +  1 )  =  ( FermatNo ‘ 𝑁 ) ) | 
						
							| 21 |  | fmtnonn | ⊢ ( 𝑁  ∈  ℕ0  →  ( FermatNo ‘ 𝑁 )  ∈  ℕ ) | 
						
							| 22 | 21 | nnzd | ⊢ ( 𝑁  ∈  ℕ0  →  ( FermatNo ‘ 𝑁 )  ∈  ℤ ) | 
						
							| 23 |  | odd2np1 | ⊢ ( ( FermatNo ‘ 𝑁 )  ∈  ℤ  →  ( ¬  2  ∥  ( FermatNo ‘ 𝑁 )  ↔  ∃ 𝑘  ∈  ℤ ( ( 2  ·  𝑘 )  +  1 )  =  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ¬  2  ∥  ( FermatNo ‘ 𝑁 )  ↔  ∃ 𝑘  ∈  ℤ ( ( 2  ·  𝑘 )  +  1 )  =  ( FermatNo ‘ 𝑁 ) ) ) | 
						
							| 25 | 20 24 | mpbird | ⊢ ( 𝑁  ∈  ℕ0  →  ¬  2  ∥  ( FermatNo ‘ 𝑁 ) ) |