Metamath Proof Explorer


Theorem fmtnorn

Description: A Fermat number is a function value of the enumeration of the Fermat numbers. (Contributed by AV, 3-Aug-2021)

Ref Expression
Assertion fmtnorn ( 𝐹 ∈ ran FermatNo ↔ ∃ 𝑛 ∈ ℕ0 ( FermatNo ‘ 𝑛 ) = 𝐹 )

Proof

Step Hyp Ref Expression
1 ovex ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) ∈ V
2 df-fmtno FermatNo = ( 𝑛 ∈ ℕ0 ↦ ( ( 2 ↑ ( 2 ↑ 𝑛 ) ) + 1 ) )
3 1 2 fnmpti FermatNo Fn ℕ0
4 fvelrnb ( FermatNo Fn ℕ0 → ( 𝐹 ∈ ran FermatNo ↔ ∃ 𝑛 ∈ ℕ0 ( FermatNo ‘ 𝑛 ) = 𝐹 ) )
5 3 4 ax-mp ( 𝐹 ∈ ran FermatNo ↔ ∃ 𝑛 ∈ ℕ0 ( FermatNo ‘ 𝑛 ) = 𝐹 )