| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn |
|- 2 e. NN |
| 2 |
1
|
a1i |
|- ( N e. NN0 -> 2 e. NN ) |
| 3 |
|
id |
|- ( N e. NN0 -> N e. NN0 ) |
| 4 |
2 3
|
nnexpcld |
|- ( N e. NN0 -> ( 2 ^ N ) e. NN ) |
| 5 |
|
nnm1nn0 |
|- ( ( 2 ^ N ) e. NN -> ( ( 2 ^ N ) - 1 ) e. NN0 ) |
| 6 |
4 5
|
syl |
|- ( N e. NN0 -> ( ( 2 ^ N ) - 1 ) e. NN0 ) |
| 7 |
2 6
|
nnexpcld |
|- ( N e. NN0 -> ( 2 ^ ( ( 2 ^ N ) - 1 ) ) e. NN ) |
| 8 |
7
|
nnzd |
|- ( N e. NN0 -> ( 2 ^ ( ( 2 ^ N ) - 1 ) ) e. ZZ ) |
| 9 |
|
oveq2 |
|- ( k = ( 2 ^ ( ( 2 ^ N ) - 1 ) ) -> ( 2 x. k ) = ( 2 x. ( 2 ^ ( ( 2 ^ N ) - 1 ) ) ) ) |
| 10 |
9
|
oveq1d |
|- ( k = ( 2 ^ ( ( 2 ^ N ) - 1 ) ) -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. ( 2 ^ ( ( 2 ^ N ) - 1 ) ) ) + 1 ) ) |
| 11 |
|
fmtno |
|- ( N e. NN0 -> ( FermatNo ` N ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) |
| 12 |
10 11
|
eqeqan12rd |
|- ( ( N e. NN0 /\ k = ( 2 ^ ( ( 2 ^ N ) - 1 ) ) ) -> ( ( ( 2 x. k ) + 1 ) = ( FermatNo ` N ) <-> ( ( 2 x. ( 2 ^ ( ( 2 ^ N ) - 1 ) ) ) + 1 ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) ) |
| 13 |
|
2cnd |
|- ( N e. NN0 -> 2 e. CC ) |
| 14 |
7
|
nncnd |
|- ( N e. NN0 -> ( 2 ^ ( ( 2 ^ N ) - 1 ) ) e. CC ) |
| 15 |
13 14
|
mulcomd |
|- ( N e. NN0 -> ( 2 x. ( 2 ^ ( ( 2 ^ N ) - 1 ) ) ) = ( ( 2 ^ ( ( 2 ^ N ) - 1 ) ) x. 2 ) ) |
| 16 |
|
expm1t |
|- ( ( 2 e. CC /\ ( 2 ^ N ) e. NN ) -> ( 2 ^ ( 2 ^ N ) ) = ( ( 2 ^ ( ( 2 ^ N ) - 1 ) ) x. 2 ) ) |
| 17 |
13 4 16
|
syl2anc |
|- ( N e. NN0 -> ( 2 ^ ( 2 ^ N ) ) = ( ( 2 ^ ( ( 2 ^ N ) - 1 ) ) x. 2 ) ) |
| 18 |
15 17
|
eqtr4d |
|- ( N e. NN0 -> ( 2 x. ( 2 ^ ( ( 2 ^ N ) - 1 ) ) ) = ( 2 ^ ( 2 ^ N ) ) ) |
| 19 |
18
|
oveq1d |
|- ( N e. NN0 -> ( ( 2 x. ( 2 ^ ( ( 2 ^ N ) - 1 ) ) ) + 1 ) = ( ( 2 ^ ( 2 ^ N ) ) + 1 ) ) |
| 20 |
8 12 19
|
rspcedvd |
|- ( N e. NN0 -> E. k e. ZZ ( ( 2 x. k ) + 1 ) = ( FermatNo ` N ) ) |
| 21 |
|
fmtnonn |
|- ( N e. NN0 -> ( FermatNo ` N ) e. NN ) |
| 22 |
21
|
nnzd |
|- ( N e. NN0 -> ( FermatNo ` N ) e. ZZ ) |
| 23 |
|
odd2np1 |
|- ( ( FermatNo ` N ) e. ZZ -> ( -. 2 || ( FermatNo ` N ) <-> E. k e. ZZ ( ( 2 x. k ) + 1 ) = ( FermatNo ` N ) ) ) |
| 24 |
22 23
|
syl |
|- ( N e. NN0 -> ( -. 2 || ( FermatNo ` N ) <-> E. k e. ZZ ( ( 2 x. k ) + 1 ) = ( FermatNo ` N ) ) ) |
| 25 |
20 24
|
mpbird |
|- ( N e. NN0 -> -. 2 || ( FermatNo ` N ) ) |