Description: Each Fermat number is a positive integer. (Contributed by AV, 26-Jul-2021) (Proof shortened by AV, 4-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | fmtnonn | ⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) ∈ ℕ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmtnoge3 | ⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 3 ) ) | |
2 | uzuzle23 | ⊢ ( ( FermatNo ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 3 ) → ( FermatNo ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) | |
3 | eluz2nn | ⊢ ( ( FermatNo ‘ 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) → ( FermatNo ‘ 𝑁 ) ∈ ℕ ) | |
4 | 1 2 3 | 3syl | ⊢ ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) ∈ ℕ ) |