Metamath Proof Explorer


Theorem fmtnonn

Description: Each Fermat number is a positive integer. (Contributed by AV, 26-Jul-2021) (Proof shortened by AV, 4-Aug-2021)

Ref Expression
Assertion fmtnonn ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 fmtnoge3 ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) ∈ ( ℤ ‘ 3 ) )
2 uzuzle23 ( ( FermatNo ‘ 𝑁 ) ∈ ( ℤ ‘ 3 ) → ( FermatNo ‘ 𝑁 ) ∈ ( ℤ ‘ 2 ) )
3 eluz2nn ( ( FermatNo ‘ 𝑁 ) ∈ ( ℤ ‘ 2 ) → ( FermatNo ‘ 𝑁 ) ∈ ℕ )
4 1 2 3 3syl ( 𝑁 ∈ ℕ0 → ( FermatNo ‘ 𝑁 ) ∈ ℕ )