Metamath Proof Explorer


Theorem fmtnoge3

Description: Each Fermat number is greater than or equal to 3. (Contributed by AV, 4-Aug-2021)

Ref Expression
Assertion fmtnoge3 N0FermatNoN3

Proof

Step Hyp Ref Expression
1 fmtno N0FermatNoN=22N+1
2 3z 3
3 2 a1i N03
4 2nn0 20
5 4 a1i N020
6 id N0N0
7 5 6 nn0expcld N02N0
8 5 7 nn0expcld N022N0
9 peano2nn0 22N022N+10
10 8 9 syl N022N+10
11 10 nn0zd N022N+1
12 3m1e2 31=2
13 2cn 2
14 exp1 221=2
15 13 14 ax-mp 21=2
16 2re 2
17 16 a1i N02
18 1le2 12
19 18 a1i N012
20 17 6 19 expge1d N012N
21 1zzd N01
22 7 nn0zd N02N
23 1lt2 1<2
24 23 a1i N01<2
25 17 21 22 24 leexp2d N012N2122N
26 20 25 mpbid N02122N
27 15 26 eqbrtrrid N0222N
28 12 27 eqbrtrid N03122N
29 3re 3
30 29 a1i N03
31 1red N01
32 8 nn0red N022N
33 30 31 32 lesubaddd N03122N322N+1
34 28 33 mpbid N0322N+1
35 eluz2 22N+13322N+1322N+1
36 3 11 34 35 syl3anbrc N022N+13
37 1 36 eqeltrd N0FermatNoN3