Metamath Proof Explorer


Theorem fmtno3

Description: The 3 rd Fermat number, see remark in ApostolNT p. 7. (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno3 FermatNo 3 = 257

Proof

Step Hyp Ref Expression
1 3nn0 3 0
2 fmtno 3 0 FermatNo 3 = 2 2 3 + 1
3 1 2 ax-mp FermatNo 3 = 2 2 3 + 1
4 cu2 2 3 = 8
5 4 oveq2i 2 2 3 = 2 8
6 5 oveq1i 2 2 3 + 1 = 2 8 + 1
7 2exp8 2 8 = 256
8 7 oveq1i 2 8 + 1 = 256 + 1
9 2nn0 2 0
10 5nn0 5 0
11 9 10 deccl 25 0
12 6nn0 6 0
13 6p1e7 6 + 1 = 7
14 eqid 256 = 256
15 11 12 13 14 decsuc 256 + 1 = 257
16 6 8 15 3eqtri 2 2 3 + 1 = 257
17 3 16 eqtri FermatNo 3 = 257