| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3nn0 | ⊢ 3  ∈  ℕ0 | 
						
							| 2 |  | fmtno | ⊢ ( 3  ∈  ℕ0  →  ( FermatNo ‘ 3 )  =  ( ( 2 ↑ ( 2 ↑ 3 ) )  +  1 ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( FermatNo ‘ 3 )  =  ( ( 2 ↑ ( 2 ↑ 3 ) )  +  1 ) | 
						
							| 4 |  | cu2 | ⊢ ( 2 ↑ 3 )  =  8 | 
						
							| 5 | 4 | oveq2i | ⊢ ( 2 ↑ ( 2 ↑ 3 ) )  =  ( 2 ↑ 8 ) | 
						
							| 6 | 5 | oveq1i | ⊢ ( ( 2 ↑ ( 2 ↑ 3 ) )  +  1 )  =  ( ( 2 ↑ 8 )  +  1 ) | 
						
							| 7 |  | 2exp8 | ⊢ ( 2 ↑ 8 )  =  ; ; 2 5 6 | 
						
							| 8 | 7 | oveq1i | ⊢ ( ( 2 ↑ 8 )  +  1 )  =  ( ; ; 2 5 6  +  1 ) | 
						
							| 9 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 10 |  | 5nn0 | ⊢ 5  ∈  ℕ0 | 
						
							| 11 | 9 10 | deccl | ⊢ ; 2 5  ∈  ℕ0 | 
						
							| 12 |  | 6nn0 | ⊢ 6  ∈  ℕ0 | 
						
							| 13 |  | 6p1e7 | ⊢ ( 6  +  1 )  =  7 | 
						
							| 14 |  | eqid | ⊢ ; ; 2 5 6  =  ; ; 2 5 6 | 
						
							| 15 | 11 12 13 14 | decsuc | ⊢ ( ; ; 2 5 6  +  1 )  =  ; ; 2 5 7 | 
						
							| 16 | 6 8 15 | 3eqtri | ⊢ ( ( 2 ↑ ( 2 ↑ 3 ) )  +  1 )  =  ; ; 2 5 7 | 
						
							| 17 | 3 16 | eqtri | ⊢ ( FermatNo ‘ 3 )  =  ; ; 2 5 7 |