Metamath Proof Explorer


Theorem fmtno3

Description: The 3 rd Fermat number, see remark in ApostolNT p. 7. (Contributed by AV, 13-Jun-2021)

Ref Expression
Assertion fmtno3 ( FermatNo ‘ 3 ) = 2 5 7

Proof

Step Hyp Ref Expression
1 3nn0 3 ∈ ℕ0
2 fmtno ( 3 ∈ ℕ0 → ( FermatNo ‘ 3 ) = ( ( 2 ↑ ( 2 ↑ 3 ) ) + 1 ) )
3 1 2 ax-mp ( FermatNo ‘ 3 ) = ( ( 2 ↑ ( 2 ↑ 3 ) ) + 1 )
4 cu2 ( 2 ↑ 3 ) = 8
5 4 oveq2i ( 2 ↑ ( 2 ↑ 3 ) ) = ( 2 ↑ 8 )
6 5 oveq1i ( ( 2 ↑ ( 2 ↑ 3 ) ) + 1 ) = ( ( 2 ↑ 8 ) + 1 )
7 2exp8 ( 2 ↑ 8 ) = 2 5 6
8 7 oveq1i ( ( 2 ↑ 8 ) + 1 ) = ( 2 5 6 + 1 )
9 2nn0 2 ∈ ℕ0
10 5nn0 5 ∈ ℕ0
11 9 10 deccl 2 5 ∈ ℕ0
12 6nn0 6 ∈ ℕ0
13 6p1e7 ( 6 + 1 ) = 7
14 eqid 2 5 6 = 2 5 6
15 11 12 13 14 decsuc ( 2 5 6 + 1 ) = 2 5 7
16 6 8 15 3eqtri ( ( 2 ↑ ( 2 ↑ 3 ) ) + 1 ) = 2 5 7
17 3 16 eqtri ( FermatNo ‘ 3 ) = 2 5 7