| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4nn0 |
⊢ 4 ∈ ℕ0 |
| 2 |
|
fmtno |
⊢ ( 4 ∈ ℕ0 → ( FermatNo ‘ 4 ) = ( ( 2 ↑ ( 2 ↑ 4 ) ) + 1 ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( FermatNo ‘ 4 ) = ( ( 2 ↑ ( 2 ↑ 4 ) ) + 1 ) |
| 4 |
|
2exp4 |
⊢ ( 2 ↑ 4 ) = ; 1 6 |
| 5 |
4
|
oveq2i |
⊢ ( 2 ↑ ( 2 ↑ 4 ) ) = ( 2 ↑ ; 1 6 ) |
| 6 |
5
|
oveq1i |
⊢ ( ( 2 ↑ ( 2 ↑ 4 ) ) + 1 ) = ( ( 2 ↑ ; 1 6 ) + 1 ) |
| 7 |
|
2exp16 |
⊢ ( 2 ↑ ; 1 6 ) = ; ; ; ; 6 5 5 3 6 |
| 8 |
7
|
oveq1i |
⊢ ( ( 2 ↑ ; 1 6 ) + 1 ) = ( ; ; ; ; 6 5 5 3 6 + 1 ) |
| 9 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
| 10 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 11 |
9 10
|
deccl |
⊢ ; 6 5 ∈ ℕ0 |
| 12 |
11 10
|
deccl |
⊢ ; ; 6 5 5 ∈ ℕ0 |
| 13 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 14 |
12 13
|
deccl |
⊢ ; ; ; 6 5 5 3 ∈ ℕ0 |
| 15 |
|
6p1e7 |
⊢ ( 6 + 1 ) = 7 |
| 16 |
|
eqid |
⊢ ; ; ; ; 6 5 5 3 6 = ; ; ; ; 6 5 5 3 6 |
| 17 |
14 9 15 16
|
decsuc |
⊢ ( ; ; ; ; 6 5 5 3 6 + 1 ) = ; ; ; ; 6 5 5 3 7 |
| 18 |
6 8 17
|
3eqtri |
⊢ ( ( 2 ↑ ( 2 ↑ 4 ) ) + 1 ) = ; ; ; ; 6 5 5 3 7 |
| 19 |
3 18
|
eqtri |
⊢ ( FermatNo ‘ 4 ) = ; ; ; ; 6 5 5 3 7 |