Description: Two to the sixteenth power is 65536. (Contributed by Mario Carneiro, 20-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2exp16 | ⊢ ( 2 ↑ ; 1 6 ) = ; ; ; ; 6 5 5 3 6 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 2 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 3 | 8cn | ⊢ 8 ∈ ℂ | |
| 4 | 2cn | ⊢ 2 ∈ ℂ | |
| 5 | 8t2e16 | ⊢ ( 8 · 2 ) = ; 1 6 | |
| 6 | 3 4 5 | mulcomli | ⊢ ( 2 · 8 ) = ; 1 6 |
| 7 | 2exp8 | ⊢ ( 2 ↑ 8 ) = ; ; 2 5 6 | |
| 8 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
| 9 | 1 8 | deccl | ⊢ ; 2 5 ∈ ℕ0 |
| 10 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 11 | 9 10 | deccl | ⊢ ; ; 2 5 6 ∈ ℕ0 |
| 12 | eqid | ⊢ ; ; 2 5 6 = ; ; 2 5 6 | |
| 13 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 14 | 13 8 | deccl | ⊢ ; 1 5 ∈ ℕ0 |
| 15 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 16 | 14 15 | deccl | ⊢ ; ; 1 5 3 ∈ ℕ0 |
| 17 | eqid | ⊢ ; 2 5 = ; 2 5 | |
| 18 | eqid | ⊢ ; ; 1 5 3 = ; ; 1 5 3 | |
| 19 | 13 1 | deccl | ⊢ ; 1 2 ∈ ℕ0 |
| 20 | 19 2 | deccl | ⊢ ; ; 1 2 8 ∈ ℕ0 |
| 21 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 22 | 13 21 | deccl | ⊢ ; 1 4 ∈ ℕ0 |
| 23 | eqid | ⊢ ; 1 5 = ; 1 5 | |
| 24 | eqid | ⊢ ; ; 1 2 8 = ; ; 1 2 8 | |
| 25 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 26 | 13 | dec0h | ⊢ 1 = ; 0 1 |
| 27 | eqid | ⊢ ; 1 2 = ; 1 2 | |
| 28 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 29 | 1p2e3 | ⊢ ( 1 + 2 ) = 3 | |
| 30 | 25 13 13 1 26 27 28 29 | decadd | ⊢ ( 1 + ; 1 2 ) = ; 1 3 |
| 31 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 32 | 13 15 13 30 31 | decaddi | ⊢ ( ( 1 + ; 1 2 ) + 1 ) = ; 1 4 |
| 33 | 5cn | ⊢ 5 ∈ ℂ | |
| 34 | 8p5e13 | ⊢ ( 8 + 5 ) = ; 1 3 | |
| 35 | 3 33 34 | addcomli | ⊢ ( 5 + 8 ) = ; 1 3 |
| 36 | 13 8 19 2 23 24 32 15 35 | decaddc | ⊢ ( ; 1 5 + ; ; 1 2 8 ) = ; ; 1 4 3 |
| 37 | eqid | ⊢ ; 1 4 = ; 1 4 | |
| 38 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
| 39 | 13 21 13 37 38 | decaddi | ⊢ ( ; 1 4 + 1 ) = ; 1 5 |
| 40 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 41 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 42 | 40 41 | oveq12i | ⊢ ( ( 2 · 2 ) + ( 1 + 1 ) ) = ( 4 + 2 ) |
| 43 | 4p2e6 | ⊢ ( 4 + 2 ) = 6 | |
| 44 | 42 43 | eqtri | ⊢ ( ( 2 · 2 ) + ( 1 + 1 ) ) = 6 |
| 45 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
| 46 | 33 | addlidi | ⊢ ( 0 + 5 ) = 5 |
| 47 | 13 25 8 45 46 | decaddi | ⊢ ( ( 5 · 2 ) + 5 ) = ; 1 5 |
| 48 | 1 8 13 8 17 39 1 8 13 44 47 | decmac | ⊢ ( ( ; 2 5 · 2 ) + ( ; 1 4 + 1 ) ) = ; 6 5 |
| 49 | 6t2e12 | ⊢ ( 6 · 2 ) = ; 1 2 | |
| 50 | 3cn | ⊢ 3 ∈ ℂ | |
| 51 | 3p2e5 | ⊢ ( 3 + 2 ) = 5 | |
| 52 | 50 4 51 | addcomli | ⊢ ( 2 + 3 ) = 5 |
| 53 | 13 1 15 49 52 | decaddi | ⊢ ( ( 6 · 2 ) + 3 ) = ; 1 5 |
| 54 | 9 10 22 15 12 36 1 8 13 48 53 | decmac | ⊢ ( ( ; ; 2 5 6 · 2 ) + ( ; 1 5 + ; ; 1 2 8 ) ) = ; ; 6 5 5 |
| 55 | 15 | dec0h | ⊢ 3 = ; 0 3 |
| 56 | 50 | addlidi | ⊢ ( 0 + 3 ) = 3 |
| 57 | 56 55 | eqtri | ⊢ ( 0 + 3 ) = ; 0 3 |
| 58 | 4 | addlidi | ⊢ ( 0 + 2 ) = 2 |
| 59 | 58 | oveq2i | ⊢ ( ( 2 · 5 ) + ( 0 + 2 ) ) = ( ( 2 · 5 ) + 2 ) |
| 60 | 33 4 45 | mulcomli | ⊢ ( 2 · 5 ) = ; 1 0 |
| 61 | 13 25 1 60 58 | decaddi | ⊢ ( ( 2 · 5 ) + 2 ) = ; 1 2 |
| 62 | 59 61 | eqtri | ⊢ ( ( 2 · 5 ) + ( 0 + 2 ) ) = ; 1 2 |
| 63 | 5t5e25 | ⊢ ( 5 · 5 ) = ; 2 5 | |
| 64 | 5p3e8 | ⊢ ( 5 + 3 ) = 8 | |
| 65 | 1 8 15 63 64 | decaddi | ⊢ ( ( 5 · 5 ) + 3 ) = ; 2 8 |
| 66 | 1 8 25 15 17 57 8 2 1 62 65 | decmac | ⊢ ( ( ; 2 5 · 5 ) + ( 0 + 3 ) ) = ; ; 1 2 8 |
| 67 | 6t5e30 | ⊢ ( 6 · 5 ) = ; 3 0 | |
| 68 | 15 25 15 67 56 | decaddi | ⊢ ( ( 6 · 5 ) + 3 ) = ; 3 3 |
| 69 | 9 10 25 15 12 55 8 15 15 66 68 | decmac | ⊢ ( ( ; ; 2 5 6 · 5 ) + 3 ) = ; ; ; 1 2 8 3 |
| 70 | 1 8 14 15 17 18 11 15 20 54 69 | decma2c | ⊢ ( ( ; ; 2 5 6 · ; 2 5 ) + ; ; 1 5 3 ) = ; ; ; 6 5 5 3 |
| 71 | 6cn | ⊢ 6 ∈ ℂ | |
| 72 | 71 4 49 | mulcomli | ⊢ ( 2 · 6 ) = ; 1 2 |
| 73 | 13 1 15 72 52 | decaddi | ⊢ ( ( 2 · 6 ) + 3 ) = ; 1 5 |
| 74 | 71 33 67 | mulcomli | ⊢ ( 5 · 6 ) = ; 3 0 |
| 75 | 15 25 15 74 56 | decaddi | ⊢ ( ( 5 · 6 ) + 3 ) = ; 3 3 |
| 76 | 1 8 15 17 10 15 15 73 75 | decrmac | ⊢ ( ( ; 2 5 · 6 ) + 3 ) = ; ; 1 5 3 |
| 77 | 6t6e36 | ⊢ ( 6 · 6 ) = ; 3 6 | |
| 78 | 10 9 10 12 10 15 76 77 | decmul1c | ⊢ ( ; ; 2 5 6 · 6 ) = ; ; ; 1 5 3 6 |
| 79 | 11 9 10 12 10 16 70 78 | decmul2c | ⊢ ( ; ; 2 5 6 · ; ; 2 5 6 ) = ; ; ; ; 6 5 5 3 6 |
| 80 | 1 2 6 7 79 | numexp2x | ⊢ ( 2 ↑ ; 1 6 ) = ; ; ; ; 6 5 5 3 6 |