Metamath Proof Explorer


Theorem 2exp16

Description: Two to the sixteenth power is 65536. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 2exp16 216=65536

Proof

Step Hyp Ref Expression
1 2nn0 20
2 8nn0 80
3 8cn 8
4 2cn 2
5 8t2e16 82=16
6 3 4 5 mulcomli 28=16
7 2exp8 28=256
8 5nn0 50
9 1 8 deccl 250
10 6nn0 60
11 9 10 deccl 2560
12 eqid 256=256
13 1nn0 10
14 13 8 deccl 150
15 3nn0 30
16 14 15 deccl 1530
17 eqid 25=25
18 eqid 153=153
19 13 1 deccl 120
20 19 2 deccl 1280
21 4nn0 40
22 13 21 deccl 140
23 eqid 15=15
24 eqid 128=128
25 0nn0 00
26 13 dec0h 1=01
27 eqid 12=12
28 0p1e1 0+1=1
29 1p2e3 1+2=3
30 25 13 13 1 26 27 28 29 decadd 1+12=13
31 3p1e4 3+1=4
32 13 15 13 30 31 decaddi 1+12+1=14
33 5cn 5
34 8p5e13 8+5=13
35 3 33 34 addcomli 5+8=13
36 13 8 19 2 23 24 32 15 35 decaddc 15+128=143
37 eqid 14=14
38 4p1e5 4+1=5
39 13 21 13 37 38 decaddi 14+1=15
40 2t2e4 22=4
41 1p1e2 1+1=2
42 40 41 oveq12i 22+1+1=4+2
43 4p2e6 4+2=6
44 42 43 eqtri 22+1+1=6
45 5t2e10 52=10
46 33 addlidi 0+5=5
47 13 25 8 45 46 decaddi 52+5=15
48 1 8 13 8 17 39 1 8 13 44 47 decmac 252+14+1=65
49 6t2e12 62=12
50 3cn 3
51 3p2e5 3+2=5
52 50 4 51 addcomli 2+3=5
53 13 1 15 49 52 decaddi 62+3=15
54 9 10 22 15 12 36 1 8 13 48 53 decmac 2562+15+128=655
55 15 dec0h 3=03
56 50 addlidi 0+3=3
57 56 55 eqtri 0+3=03
58 4 addlidi 0+2=2
59 58 oveq2i 25+0+2=25+2
60 33 4 45 mulcomli 25=10
61 13 25 1 60 58 decaddi 25+2=12
62 59 61 eqtri 25+0+2=12
63 5t5e25 55=25
64 5p3e8 5+3=8
65 1 8 15 63 64 decaddi 55+3=28
66 1 8 25 15 17 57 8 2 1 62 65 decmac 255+0+3=128
67 6t5e30 65=30
68 15 25 15 67 56 decaddi 65+3=33
69 9 10 25 15 12 55 8 15 15 66 68 decmac 2565+3=1283
70 1 8 14 15 17 18 11 15 20 54 69 decma2c 25625+153=6553
71 6cn 6
72 71 4 49 mulcomli 26=12
73 13 1 15 72 52 decaddi 26+3=15
74 71 33 67 mulcomli 56=30
75 15 25 15 74 56 decaddi 56+3=33
76 1 8 15 17 10 15 15 73 75 decrmac 256+3=153
77 6t6e36 66=36
78 10 9 10 12 10 15 76 77 decmul1c 2566=1536
79 11 9 10 12 10 16 70 78 decmul2c 256256=65536
80 1 2 6 7 79 numexp2x 216=65536