Step |
Hyp |
Ref |
Expression |
1 |
|
2nn0 |
|- 2 e. NN0 |
2 |
|
8nn0 |
|- 8 e. NN0 |
3 |
|
8cn |
|- 8 e. CC |
4 |
|
2cn |
|- 2 e. CC |
5 |
|
8t2e16 |
|- ( 8 x. 2 ) = ; 1 6 |
6 |
3 4 5
|
mulcomli |
|- ( 2 x. 8 ) = ; 1 6 |
7 |
|
2exp8 |
|- ( 2 ^ 8 ) = ; ; 2 5 6 |
8 |
|
5nn0 |
|- 5 e. NN0 |
9 |
1 8
|
deccl |
|- ; 2 5 e. NN0 |
10 |
|
6nn0 |
|- 6 e. NN0 |
11 |
9 10
|
deccl |
|- ; ; 2 5 6 e. NN0 |
12 |
|
eqid |
|- ; ; 2 5 6 = ; ; 2 5 6 |
13 |
|
1nn0 |
|- 1 e. NN0 |
14 |
13 8
|
deccl |
|- ; 1 5 e. NN0 |
15 |
|
3nn0 |
|- 3 e. NN0 |
16 |
14 15
|
deccl |
|- ; ; 1 5 3 e. NN0 |
17 |
|
eqid |
|- ; 2 5 = ; 2 5 |
18 |
|
eqid |
|- ; ; 1 5 3 = ; ; 1 5 3 |
19 |
13 1
|
deccl |
|- ; 1 2 e. NN0 |
20 |
19 2
|
deccl |
|- ; ; 1 2 8 e. NN0 |
21 |
|
4nn0 |
|- 4 e. NN0 |
22 |
13 21
|
deccl |
|- ; 1 4 e. NN0 |
23 |
|
eqid |
|- ; 1 5 = ; 1 5 |
24 |
|
eqid |
|- ; ; 1 2 8 = ; ; 1 2 8 |
25 |
|
0nn0 |
|- 0 e. NN0 |
26 |
13
|
dec0h |
|- 1 = ; 0 1 |
27 |
|
eqid |
|- ; 1 2 = ; 1 2 |
28 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
29 |
|
1p2e3 |
|- ( 1 + 2 ) = 3 |
30 |
25 13 13 1 26 27 28 29
|
decadd |
|- ( 1 + ; 1 2 ) = ; 1 3 |
31 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
32 |
13 15 13 30 31
|
decaddi |
|- ( ( 1 + ; 1 2 ) + 1 ) = ; 1 4 |
33 |
|
5cn |
|- 5 e. CC |
34 |
|
8p5e13 |
|- ( 8 + 5 ) = ; 1 3 |
35 |
3 33 34
|
addcomli |
|- ( 5 + 8 ) = ; 1 3 |
36 |
13 8 19 2 23 24 32 15 35
|
decaddc |
|- ( ; 1 5 + ; ; 1 2 8 ) = ; ; 1 4 3 |
37 |
|
eqid |
|- ; 1 4 = ; 1 4 |
38 |
|
4p1e5 |
|- ( 4 + 1 ) = 5 |
39 |
13 21 13 37 38
|
decaddi |
|- ( ; 1 4 + 1 ) = ; 1 5 |
40 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
41 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
42 |
40 41
|
oveq12i |
|- ( ( 2 x. 2 ) + ( 1 + 1 ) ) = ( 4 + 2 ) |
43 |
|
4p2e6 |
|- ( 4 + 2 ) = 6 |
44 |
42 43
|
eqtri |
|- ( ( 2 x. 2 ) + ( 1 + 1 ) ) = 6 |
45 |
|
5t2e10 |
|- ( 5 x. 2 ) = ; 1 0 |
46 |
33
|
addlidi |
|- ( 0 + 5 ) = 5 |
47 |
13 25 8 45 46
|
decaddi |
|- ( ( 5 x. 2 ) + 5 ) = ; 1 5 |
48 |
1 8 13 8 17 39 1 8 13 44 47
|
decmac |
|- ( ( ; 2 5 x. 2 ) + ( ; 1 4 + 1 ) ) = ; 6 5 |
49 |
|
6t2e12 |
|- ( 6 x. 2 ) = ; 1 2 |
50 |
|
3cn |
|- 3 e. CC |
51 |
|
3p2e5 |
|- ( 3 + 2 ) = 5 |
52 |
50 4 51
|
addcomli |
|- ( 2 + 3 ) = 5 |
53 |
13 1 15 49 52
|
decaddi |
|- ( ( 6 x. 2 ) + 3 ) = ; 1 5 |
54 |
9 10 22 15 12 36 1 8 13 48 53
|
decmac |
|- ( ( ; ; 2 5 6 x. 2 ) + ( ; 1 5 + ; ; 1 2 8 ) ) = ; ; 6 5 5 |
55 |
15
|
dec0h |
|- 3 = ; 0 3 |
56 |
50
|
addlidi |
|- ( 0 + 3 ) = 3 |
57 |
56 55
|
eqtri |
|- ( 0 + 3 ) = ; 0 3 |
58 |
4
|
addlidi |
|- ( 0 + 2 ) = 2 |
59 |
58
|
oveq2i |
|- ( ( 2 x. 5 ) + ( 0 + 2 ) ) = ( ( 2 x. 5 ) + 2 ) |
60 |
33 4 45
|
mulcomli |
|- ( 2 x. 5 ) = ; 1 0 |
61 |
13 25 1 60 58
|
decaddi |
|- ( ( 2 x. 5 ) + 2 ) = ; 1 2 |
62 |
59 61
|
eqtri |
|- ( ( 2 x. 5 ) + ( 0 + 2 ) ) = ; 1 2 |
63 |
|
5t5e25 |
|- ( 5 x. 5 ) = ; 2 5 |
64 |
|
5p3e8 |
|- ( 5 + 3 ) = 8 |
65 |
1 8 15 63 64
|
decaddi |
|- ( ( 5 x. 5 ) + 3 ) = ; 2 8 |
66 |
1 8 25 15 17 57 8 2 1 62 65
|
decmac |
|- ( ( ; 2 5 x. 5 ) + ( 0 + 3 ) ) = ; ; 1 2 8 |
67 |
|
6t5e30 |
|- ( 6 x. 5 ) = ; 3 0 |
68 |
15 25 15 67 56
|
decaddi |
|- ( ( 6 x. 5 ) + 3 ) = ; 3 3 |
69 |
9 10 25 15 12 55 8 15 15 66 68
|
decmac |
|- ( ( ; ; 2 5 6 x. 5 ) + 3 ) = ; ; ; 1 2 8 3 |
70 |
1 8 14 15 17 18 11 15 20 54 69
|
decma2c |
|- ( ( ; ; 2 5 6 x. ; 2 5 ) + ; ; 1 5 3 ) = ; ; ; 6 5 5 3 |
71 |
|
6cn |
|- 6 e. CC |
72 |
71 4 49
|
mulcomli |
|- ( 2 x. 6 ) = ; 1 2 |
73 |
13 1 15 72 52
|
decaddi |
|- ( ( 2 x. 6 ) + 3 ) = ; 1 5 |
74 |
71 33 67
|
mulcomli |
|- ( 5 x. 6 ) = ; 3 0 |
75 |
15 25 15 74 56
|
decaddi |
|- ( ( 5 x. 6 ) + 3 ) = ; 3 3 |
76 |
1 8 15 17 10 15 15 73 75
|
decrmac |
|- ( ( ; 2 5 x. 6 ) + 3 ) = ; ; 1 5 3 |
77 |
|
6t6e36 |
|- ( 6 x. 6 ) = ; 3 6 |
78 |
10 9 10 12 10 15 76 77
|
decmul1c |
|- ( ; ; 2 5 6 x. 6 ) = ; ; ; 1 5 3 6 |
79 |
11 9 10 12 10 16 70 78
|
decmul2c |
|- ( ; ; 2 5 6 x. ; ; 2 5 6 ) = ; ; ; ; 6 5 5 3 6 |
80 |
1 2 6 7 79
|
numexp2x |
|- ( 2 ^ ; 1 6 ) = ; ; ; ; 6 5 5 3 6 |