Description: Perform a multiply-add of two numerals M and N against a fixed multiplicand P (with carry). (Contributed by AV, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decrmanc.a | |- A e. NN0 |
|
| decrmanc.b | |- B e. NN0 |
||
| decrmanc.n | |- N e. NN0 |
||
| decrmanc.m | |- M = ; A B |
||
| decrmanc.p | |- P e. NN0 |
||
| decrmac.f | |- F e. NN0 |
||
| decrmac.g | |- G e. NN0 |
||
| decrmac.e | |- ( ( A x. P ) + G ) = E |
||
| decrmac.2 | |- ( ( B x. P ) + N ) = ; G F |
||
| Assertion | decrmac | |- ( ( M x. P ) + N ) = ; E F |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decrmanc.a | |- A e. NN0 |
|
| 2 | decrmanc.b | |- B e. NN0 |
|
| 3 | decrmanc.n | |- N e. NN0 |
|
| 4 | decrmanc.m | |- M = ; A B |
|
| 5 | decrmanc.p | |- P e. NN0 |
|
| 6 | decrmac.f | |- F e. NN0 |
|
| 7 | decrmac.g | |- G e. NN0 |
|
| 8 | decrmac.e | |- ( ( A x. P ) + G ) = E |
|
| 9 | decrmac.2 | |- ( ( B x. P ) + N ) = ; G F |
|
| 10 | 0nn0 | |- 0 e. NN0 |
|
| 11 | 3 | dec0h | |- N = ; 0 N |
| 12 | 7 | nn0cni | |- G e. CC |
| 13 | 12 | addlidi | |- ( 0 + G ) = G |
| 14 | 13 | oveq2i | |- ( ( A x. P ) + ( 0 + G ) ) = ( ( A x. P ) + G ) |
| 15 | 14 8 | eqtri | |- ( ( A x. P ) + ( 0 + G ) ) = E |
| 16 | 1 2 10 3 4 11 5 6 7 15 9 | decmac | |- ( ( M x. P ) + N ) = ; E F |