| Step |
Hyp |
Ref |
Expression |
| 1 |
|
decma.a |
|- A e. NN0 |
| 2 |
|
decma.b |
|- B e. NN0 |
| 3 |
|
decma.c |
|- C e. NN0 |
| 4 |
|
decma.d |
|- D e. NN0 |
| 5 |
|
decma.m |
|- M = ; A B |
| 6 |
|
decma.n |
|- N = ; C D |
| 7 |
|
decaddc.e |
|- ( ( A + C ) + 1 ) = E |
| 8 |
|
decaddc.f |
|- F e. NN0 |
| 9 |
|
decaddc.2 |
|- ( B + D ) = ; 1 F |
| 10 |
|
10nn0 |
|- ; 1 0 e. NN0 |
| 11 |
|
dfdec10 |
|- ; A B = ( ( ; 1 0 x. A ) + B ) |
| 12 |
5 11
|
eqtri |
|- M = ( ( ; 1 0 x. A ) + B ) |
| 13 |
|
dfdec10 |
|- ; C D = ( ( ; 1 0 x. C ) + D ) |
| 14 |
6 13
|
eqtri |
|- N = ( ( ; 1 0 x. C ) + D ) |
| 15 |
|
dfdec10 |
|- ; 1 F = ( ( ; 1 0 x. 1 ) + F ) |
| 16 |
9 15
|
eqtri |
|- ( B + D ) = ( ( ; 1 0 x. 1 ) + F ) |
| 17 |
10 1 2 3 4 12 14 8 7 16
|
numaddc |
|- ( M + N ) = ( ( ; 1 0 x. E ) + F ) |
| 18 |
|
dfdec10 |
|- ; E F = ( ( ; 1 0 x. E ) + F ) |
| 19 |
17 18
|
eqtr4i |
|- ( M + N ) = ; E F |