Metamath Proof Explorer
Description: 6 times 6 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015)
(Revised by AV, 6-Sep-2021)
|
|
Ref |
Expression |
|
Assertion |
6t6e36 |
⊢ ( 6 · 6 ) = ; 3 6 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
6nn0 |
⊢ 6 ∈ ℕ0 |
| 2 |
|
5nn0 |
⊢ 5 ∈ ℕ0 |
| 3 |
|
df-6 |
⊢ 6 = ( 5 + 1 ) |
| 4 |
|
6t5e30 |
⊢ ( 6 · 5 ) = ; 3 0 |
| 5 |
|
3nn0 |
⊢ 3 ∈ ℕ0 |
| 6 |
5
|
dec0u |
⊢ ( ; 1 0 · 3 ) = ; 3 0 |
| 7 |
4 6
|
eqtr4i |
⊢ ( 6 · 5 ) = ( ; 1 0 · 3 ) |
| 8 |
|
dfdec10 |
⊢ ; 3 6 = ( ( ; 1 0 · 3 ) + 6 ) |
| 9 |
8
|
eqcomi |
⊢ ( ( ; 1 0 · 3 ) + 6 ) = ; 3 6 |
| 10 |
1 2 3 7 9
|
4t3lem |
⊢ ( 6 · 6 ) = ; 3 6 |