| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numexp.1 |
⊢ 𝐴 ∈ ℕ0 |
| 2 |
|
numexpp1.2 |
⊢ 𝑀 ∈ ℕ0 |
| 3 |
|
numexp2x.3 |
⊢ ( 2 · 𝑀 ) = 𝑁 |
| 4 |
|
numexp2x.4 |
⊢ ( 𝐴 ↑ 𝑀 ) = 𝐷 |
| 5 |
|
numexp2x.5 |
⊢ ( 𝐷 · 𝐷 ) = 𝐶 |
| 6 |
2
|
nn0cni |
⊢ 𝑀 ∈ ℂ |
| 7 |
6
|
2timesi |
⊢ ( 2 · 𝑀 ) = ( 𝑀 + 𝑀 ) |
| 8 |
3 7
|
eqtr3i |
⊢ 𝑁 = ( 𝑀 + 𝑀 ) |
| 9 |
8
|
oveq2i |
⊢ ( 𝐴 ↑ 𝑁 ) = ( 𝐴 ↑ ( 𝑀 + 𝑀 ) ) |
| 10 |
1
|
nn0cni |
⊢ 𝐴 ∈ ℂ |
| 11 |
|
expadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑀 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑀 ) ) ) |
| 12 |
10 2 2 11
|
mp3an |
⊢ ( 𝐴 ↑ ( 𝑀 + 𝑀 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑀 ) ) |
| 13 |
9 12
|
eqtri |
⊢ ( 𝐴 ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑀 ) ) |
| 14 |
4 4
|
oveq12i |
⊢ ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑀 ) ) = ( 𝐷 · 𝐷 ) |
| 15 |
14 5
|
eqtri |
⊢ ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑀 ) ) = 𝐶 |
| 16 |
13 15
|
eqtri |
⊢ ( 𝐴 ↑ 𝑁 ) = 𝐶 |