Metamath Proof Explorer


Theorem fmtno5lem3

Description: Lemma 3 for fmtno5 . (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5lem3 655363=196608

Proof

Step Hyp Ref Expression
1 3nn0 30
2 6nn0 60
3 5nn0 50
4 2 3 deccl 650
5 4 3 deccl 6550
6 5 1 deccl 65530
7 eqid 65536=65536
8 8nn0 80
9 1nn0 10
10 9nn0 90
11 9 10 deccl 190
12 11 2 deccl 1960
13 12 3 deccl 19650
14 5p1e6 5+1=6
15 eqid 1965=1965
16 12 3 14 15 decsuc 1965+1=1966
17 eqid 6553=6553
18 eqid 655=655
19 eqid 65=65
20 8p1e9 8+1=9
21 6t3e18 63=18
22 9 8 20 21 decsuc 63+1=19
23 5t3e15 53=15
24 1 2 3 19 3 9 22 23 decmul1c 653=195
25 11 3 14 24 decsuc 653+1=196
26 1 4 3 18 3 9 25 23 decmul1c 6553=1965
27 3t3e9 33=9
28 1 5 1 17 26 27 decmul1 65533=19659
29 13 16 28 decsucc 65533+1=19660
30 1 6 2 7 8 9 29 21 decmul1c 655363=196608