Metamath Proof Explorer


Theorem fmtno5lem3

Description: Lemma 3 for fmtno5 . (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5lem3 65536 3 = 196608

Proof

Step Hyp Ref Expression
1 3nn0 3 0
2 6nn0 6 0
3 5nn0 5 0
4 2 3 deccl 65 0
5 4 3 deccl 655 0
6 5 1 deccl 6553 0
7 eqid 65536 = 65536
8 8nn0 8 0
9 1nn0 1 0
10 9nn0 9 0
11 9 10 deccl 19 0
12 11 2 deccl 196 0
13 12 3 deccl 1965 0
14 5p1e6 5 + 1 = 6
15 eqid 1965 = 1965
16 12 3 14 15 decsuc 1965 + 1 = 1966
17 eqid 6553 = 6553
18 eqid 655 = 655
19 eqid 65 = 65
20 8p1e9 8 + 1 = 9
21 6t3e18 6 3 = 18
22 9 8 20 21 decsuc 6 3 + 1 = 19
23 5t3e15 5 3 = 15
24 1 2 3 19 3 9 22 23 decmul1c 65 3 = 195
25 11 3 14 24 decsuc 65 3 + 1 = 196
26 1 4 3 18 3 9 25 23 decmul1c 655 3 = 1965
27 3t3e9 3 3 = 9
28 1 5 1 17 26 27 decmul1 6553 3 = 19659
29 13 16 28 decsucc 6553 3 + 1 = 19660
30 1 6 2 7 8 9 29 21 decmul1c 65536 3 = 196608