Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension)
Fermat numbers
fmtnole4prm
Next ⟩
fmtno5faclem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
fmtnole4prm
Description:
The first five Fermat numbers are prime.
(Contributed by
AV
, 28-Jul-2021)
Ref
Expression
Assertion
fmtnole4prm
⊢
N
∈
ℕ
0
∧
N
≤
4
→
FermatNo
⁡
N
∈
ℙ
Proof
Step
Hyp
Ref
Expression
1
simpl
⊢
N
∈
ℕ
0
∧
N
≤
4
→
N
∈
ℕ
0
2
4nn0
⊢
4
∈
ℕ
0
3
2
a1i
⊢
N
∈
ℕ
0
∧
N
≤
4
→
4
∈
ℕ
0
4
simpr
⊢
N
∈
ℕ
0
∧
N
≤
4
→
N
≤
4
5
elfz2nn0
⊢
N
∈
0
…
4
↔
N
∈
ℕ
0
∧
4
∈
ℕ
0
∧
N
≤
4
6
1
3
4
5
syl3anbrc
⊢
N
∈
ℕ
0
∧
N
≤
4
→
N
∈
0
…
4
7
fmtnofz04prm
⊢
N
∈
0
…
4
→
FermatNo
⁡
N
∈
ℙ
8
6
7
syl
⊢
N
∈
ℕ
0
∧
N
≤
4
→
FermatNo
⁡
N
∈
ℙ