Metamath Proof Explorer


Theorem fmtno5faclem1

Description: Lemma 1 for fmtno5fac . (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5faclem1 67004174=26801668

Proof

Step Hyp Ref Expression
1 4nn0 40
2 6nn0 60
3 7nn0 70
4 2 3 deccl 670
5 0nn0 00
6 4 5 deccl 6700
7 6 5 deccl 67000
8 7 1 deccl 670040
9 1nn0 10
10 8 9 deccl 6700410
11 eqid 6700417=6700417
12 8nn0 80
13 2nn0 20
14 13 2 deccl 260
15 14 12 deccl 2680
16 15 5 deccl 26800
17 16 9 deccl 268010
18 17 2 deccl 2680160
19 eqid 670041=670041
20 eqid 67004=67004
21 eqid 6700=6700
22 eqid 670=670
23 eqid 67=67
24 6t4e24 64=24
25 4p2e6 4+2=6
26 13 1 13 24 25 decaddi 64+2=26
27 7t4e28 74=28
28 1 2 3 23 12 13 26 27 decmul1c 674=268
29 4cn 4
30 29 mul02i 04=0
31 1 4 5 22 28 30 decmul1 6704=2680
32 1 6 5 21 31 30 decmul1 67004=26800
33 0p1e1 0+1=1
34 16 5 9 32 33 decaddi 67004+1=26801
35 4t4e16 44=16
36 1 7 1 20 2 9 34 35 decmul1c 670044=268016
37 29 mullidi 14=4
38 1 8 9 19 36 37 decmul1 6700414=2680164
39 18 1 13 38 25 decaddi 6700414+2=2680166
40 1 10 3 11 12 13 39 27 decmul1c 67004174=26801668