Metamath Proof Explorer


Theorem fmtno5faclem1

Description: Lemma 1 for fmtno5fac . (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5faclem1 6700417 4 = 26801668

Proof

Step Hyp Ref Expression
1 4nn0 4 0
2 6nn0 6 0
3 7nn0 7 0
4 2 3 deccl 67 0
5 0nn0 0 0
6 4 5 deccl 670 0
7 6 5 deccl 6700 0
8 7 1 deccl 67004 0
9 1nn0 1 0
10 8 9 deccl 670041 0
11 eqid 6700417 = 6700417
12 8nn0 8 0
13 2nn0 2 0
14 13 2 deccl 26 0
15 14 12 deccl 268 0
16 15 5 deccl 2680 0
17 16 9 deccl 26801 0
18 17 2 deccl 268016 0
19 eqid 670041 = 670041
20 eqid 67004 = 67004
21 eqid 6700 = 6700
22 eqid 670 = 670
23 eqid 67 = 67
24 6t4e24 6 4 = 24
25 4p2e6 4 + 2 = 6
26 13 1 13 24 25 decaddi 6 4 + 2 = 26
27 7t4e28 7 4 = 28
28 1 2 3 23 12 13 26 27 decmul1c 67 4 = 268
29 4cn 4
30 29 mul02i 0 4 = 0
31 1 4 5 22 28 30 decmul1 670 4 = 2680
32 1 6 5 21 31 30 decmul1 6700 4 = 26800
33 0p1e1 0 + 1 = 1
34 16 5 9 32 33 decaddi 6700 4 + 1 = 26801
35 4t4e16 4 4 = 16
36 1 7 1 20 2 9 34 35 decmul1c 67004 4 = 268016
37 29 mulid2i 1 4 = 4
38 1 8 9 19 36 37 decmul1 670041 4 = 2680164
39 18 1 13 38 25 decaddi 670041 4 + 2 = 2680166
40 1 10 3 11 12 13 39 27 decmul1c 6700417 4 = 26801668