Metamath Proof Explorer


Theorem fmtno5faclem1

Description: Lemma 1 for fmtno5fac . (Contributed by AV, 22-Jul-2021)

Ref Expression
Assertion fmtno5faclem1 ( 6 7 0 0 4 1 7 · 4 ) = 2 6 8 0 1 6 6 8

Proof

Step Hyp Ref Expression
1 4nn0 4 ∈ ℕ0
2 6nn0 6 ∈ ℕ0
3 7nn0 7 ∈ ℕ0
4 2 3 deccl 6 7 ∈ ℕ0
5 0nn0 0 ∈ ℕ0
6 4 5 deccl 6 7 0 ∈ ℕ0
7 6 5 deccl 6 7 0 0 ∈ ℕ0
8 7 1 deccl 6 7 0 0 4 ∈ ℕ0
9 1nn0 1 ∈ ℕ0
10 8 9 deccl 6 7 0 0 4 1 ∈ ℕ0
11 eqid 6 7 0 0 4 1 7 = 6 7 0 0 4 1 7
12 8nn0 8 ∈ ℕ0
13 2nn0 2 ∈ ℕ0
14 13 2 deccl 2 6 ∈ ℕ0
15 14 12 deccl 2 6 8 ∈ ℕ0
16 15 5 deccl 2 6 8 0 ∈ ℕ0
17 16 9 deccl 2 6 8 0 1 ∈ ℕ0
18 17 2 deccl 2 6 8 0 1 6 ∈ ℕ0
19 eqid 6 7 0 0 4 1 = 6 7 0 0 4 1
20 eqid 6 7 0 0 4 = 6 7 0 0 4
21 eqid 6 7 0 0 = 6 7 0 0
22 eqid 6 7 0 = 6 7 0
23 eqid 6 7 = 6 7
24 6t4e24 ( 6 · 4 ) = 2 4
25 4p2e6 ( 4 + 2 ) = 6
26 13 1 13 24 25 decaddi ( ( 6 · 4 ) + 2 ) = 2 6
27 7t4e28 ( 7 · 4 ) = 2 8
28 1 2 3 23 12 13 26 27 decmul1c ( 6 7 · 4 ) = 2 6 8
29 4cn 4 ∈ ℂ
30 29 mul02i ( 0 · 4 ) = 0
31 1 4 5 22 28 30 decmul1 ( 6 7 0 · 4 ) = 2 6 8 0
32 1 6 5 21 31 30 decmul1 ( 6 7 0 0 · 4 ) = 2 6 8 0 0
33 0p1e1 ( 0 + 1 ) = 1
34 16 5 9 32 33 decaddi ( ( 6 7 0 0 · 4 ) + 1 ) = 2 6 8 0 1
35 4t4e16 ( 4 · 4 ) = 1 6
36 1 7 1 20 2 9 34 35 decmul1c ( 6 7 0 0 4 · 4 ) = 2 6 8 0 1 6
37 29 mulid2i ( 1 · 4 ) = 4
38 1 8 9 19 36 37 decmul1 ( 6 7 0 0 4 1 · 4 ) = 2 6 8 0 1 6 4
39 18 1 13 38 25 decaddi ( ( 6 7 0 0 4 1 · 4 ) + 2 ) = 2 6 8 0 1 6 6
40 1 10 3 11 12 13 39 27 decmul1c ( 6 7 0 0 4 1 7 · 4 ) = 2 6 8 0 1 6 6 8