Metamath Proof Explorer


Theorem fnmptif

Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses fnmptif.1 _xA
fnmptif.2 BV
fnmptif.3 F=xAB
Assertion fnmptif FFnA

Proof

Step Hyp Ref Expression
1 fnmptif.1 _xA
2 fnmptif.2 BV
3 fnmptif.3 F=xAB
4 2 rgenw xABV
5 1 mptfnf xABVxABFnA
6 4 5 mpbi xABFnA
7 3 fneq1i FFnAxABFnA
8 6 7 mpbir FFnA