Metamath Proof Explorer


Theorem fnmptif

Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses fnmptif.1
|- F/_ x A
fnmptif.2
|- B e. _V
fnmptif.3
|- F = ( x e. A |-> B )
Assertion fnmptif
|- F Fn A

Proof

Step Hyp Ref Expression
1 fnmptif.1
 |-  F/_ x A
2 fnmptif.2
 |-  B e. _V
3 fnmptif.3
 |-  F = ( x e. A |-> B )
4 2 rgenw
 |-  A. x e. A B e. _V
5 1 mptfnf
 |-  ( A. x e. A B e. _V <-> ( x e. A |-> B ) Fn A )
6 4 5 mpbi
 |-  ( x e. A |-> B ) Fn A
7 3 fneq1i
 |-  ( F Fn A <-> ( x e. A |-> B ) Fn A )
8 6 7 mpbir
 |-  F Fn A