Metamath Proof Explorer


Theorem dmmptif

Description: Domain of the mapping operation. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses dmmptif.1
|- F/_ x A
dmmptif.2
|- B e. _V
dmmptif.3
|- F = ( x e. A |-> B )
Assertion dmmptif
|- dom F = A

Proof

Step Hyp Ref Expression
1 dmmptif.1
 |-  F/_ x A
2 dmmptif.2
 |-  B e. _V
3 dmmptif.3
 |-  F = ( x e. A |-> B )
4 1 2 3 fnmptif
 |-  F Fn A
5 fndm
 |-  ( F Fn A -> dom F = A )
6 4 5 ax-mp
 |-  dom F = A