Metamath Proof Explorer


Theorem fnpr2o

Description: Function with a domain of 2o . (Contributed by Jim Kingdon, 25-Sep-2023)

Ref Expression
Assertion fnpr2o AVBWA1𝑜BFn2𝑜

Proof

Step Hyp Ref Expression
1 peano1 ω
2 1 a1i AVBWω
3 1onn 1𝑜ω
4 3 a1i AVBW1𝑜ω
5 simpl AVBWAV
6 simpr AVBWBW
7 1n0 1𝑜
8 7 necomi 1𝑜
9 8 a1i AVBW1𝑜
10 fnprg ω1𝑜ωAVBW1𝑜A1𝑜BFn1𝑜
11 2 4 5 6 9 10 syl221anc AVBWA1𝑜BFn1𝑜
12 df2o3 2𝑜=1𝑜
13 12 fneq2i A1𝑜BFn2𝑜A1𝑜BFn1𝑜
14 11 13 sylibr AVBWA1𝑜BFn2𝑜