Metamath Proof Explorer


Theorem foeq123d

Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses f1eq123d.1 φF=G
f1eq123d.2 φA=B
f1eq123d.3 φC=D
Assertion foeq123d φF:AontoCG:BontoD

Proof

Step Hyp Ref Expression
1 f1eq123d.1 φF=G
2 f1eq123d.2 φA=B
3 f1eq123d.3 φC=D
4 foeq1 F=GF:AontoCG:AontoC
5 1 4 syl φF:AontoCG:AontoC
6 foeq2 A=BG:AontoCG:BontoC
7 2 6 syl φG:AontoCG:BontoC
8 foeq3 C=DG:BontoCG:BontoD
9 3 8 syl φG:BontoCG:BontoD
10 5 7 9 3bitrd φF:AontoCG:BontoD