Metamath Proof Explorer
Description: A total function is a partial function. (Contributed by Glauco
Siliprandi, 5-Feb-2022)
|
|
Ref |
Expression |
|
Hypotheses |
fpmd.a |
|
|
|
fpmd.b |
|
|
|
fpmd.c |
|
|
|
fpmd.f |
|
|
Assertion |
fpmd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fpmd.a |
|
| 2 |
|
fpmd.b |
|
| 3 |
|
fpmd.c |
|
| 4 |
|
fpmd.f |
|
| 5 |
|
elpm2r |
|
| 6 |
2 1 4 3 5
|
syl22anc |
|