Metamath Proof Explorer


Theorem frege125

Description: Lemma for frege126 . Proposition 125 of Frege1879 p. 81. (Contributed by RP, 9-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege123.x X U
frege123.y Y V
frege124.m M W
frege124.r R S
Assertion frege125 X t+ R I M ¬ X t+ R M M t+ R I X Fun R -1 -1 Y R X Y t+ R M ¬ X t+ R M M t+ R I X

Proof

Step Hyp Ref Expression
1 frege123.x X U
2 frege123.y Y V
3 frege124.m M W
4 frege124.r R S
5 1 2 3 4 frege124 Fun R -1 -1 Y R X Y t+ R M X t+ R I M
6 frege20 Fun R -1 -1 Y R X Y t+ R M X t+ R I M X t+ R I M ¬ X t+ R M M t+ R I X Fun R -1 -1 Y R X Y t+ R M ¬ X t+ R M M t+ R I X
7 5 6 ax-mp X t+ R I M ¬ X t+ R M M t+ R I X Fun R -1 -1 Y R X Y t+ R M ¬ X t+ R M M t+ R I X