Metamath Proof Explorer


Theorem frege129

Description: If the procedure R is single-valued and Y belongs to the R -sequence begining with M or precedes M in the R -sequence, then every result of an application of the procedure R to Y belongs to the R -sequence begining with M or precedes M in the R -sequence. Proposition 129 of Frege1879 p. 83. (Contributed by RP, 9-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege123.x X U
frege123.y Y V
frege124.m M W
frege124.r R S
Assertion frege129 Fun R -1 -1 ¬ Y t+ R M M t+ R I Y Y R X ¬ X t+ R M M t+ R I X

Proof

Step Hyp Ref Expression
1 frege123.x X U
2 frege123.y Y V
3 frege124.m M W
4 frege124.r R S
5 3 2 1 4 frege111 M t+ R I Y Y R X ¬ X t+ R M M t+ R I X
6 1 2 3 4 frege128 M t+ R I Y Y R X ¬ X t+ R M M t+ R I X Fun R -1 -1 ¬ Y t+ R M M t+ R I Y Y R X ¬ X t+ R M M t+ R I X
7 5 6 ax-mp Fun R -1 -1 ¬ Y t+ R M M t+ R I Y Y R X ¬ X t+ R M M t+ R I X