Metamath Proof Explorer


Theorem frege129

Description: If the procedure R is single-valued and Y belongs to the R -sequence begining with M or precedes M in the R -sequence, then every result of an application of the procedure R to Y belongs to the R -sequence begining with M or precedes M in the R -sequence. Proposition 129 of Frege1879 p. 83. (Contributed by RP, 9-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege123.x
|- X e. U
frege123.y
|- Y e. V
frege124.m
|- M e. W
frege124.r
|- R e. S
Assertion frege129
|- ( Fun `' `' R -> ( ( -. Y ( t+ ` R ) M -> M ( ( t+ ` R ) u. _I ) Y ) -> ( Y R X -> ( -. X ( t+ ` R ) M -> M ( ( t+ ` R ) u. _I ) X ) ) ) )

Proof

Step Hyp Ref Expression
1 frege123.x
 |-  X e. U
2 frege123.y
 |-  Y e. V
3 frege124.m
 |-  M e. W
4 frege124.r
 |-  R e. S
5 3 2 1 4 frege111
 |-  ( M ( ( t+ ` R ) u. _I ) Y -> ( Y R X -> ( -. X ( t+ ` R ) M -> M ( ( t+ ` R ) u. _I ) X ) ) )
6 1 2 3 4 frege128
 |-  ( ( M ( ( t+ ` R ) u. _I ) Y -> ( Y R X -> ( -. X ( t+ ` R ) M -> M ( ( t+ ` R ) u. _I ) X ) ) ) -> ( Fun `' `' R -> ( ( -. Y ( t+ ` R ) M -> M ( ( t+ ` R ) u. _I ) Y ) -> ( Y R X -> ( -. X ( t+ ` R ) M -> M ( ( t+ ` R ) u. _I ) X ) ) ) ) )
7 5 6 ax-mp
 |-  ( Fun `' `' R -> ( ( -. Y ( t+ ` R ) M -> M ( ( t+ ` R ) u. _I ) Y ) -> ( Y R X -> ( -. X ( t+ ` R ) M -> M ( ( t+ ` R ) u. _I ) X ) ) ) )